Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13793, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877030

ABSTRACT

Solar-driven interfacial desalination technology has shown great promise in tackling the urgent global water scarcity crisis due to its ability to localize heat and its high solar-to-thermal energy conversion efficiency. For the realization of sustainable saline water desalination, the exploration of novel photothermal materials with higher water vapor generation and photothermal conversion efficiency is indispensable. In the current study, a novel 3D interconnected monolithic Ag-doped rGO network was synthesized for efficient photothermal application. The Ultraviolet-Visible-Near Infrared (UV-Vis-NIR) and FTIR analyses demonstrated that the controlled hydrothermal reduction of GO enabled the restoration of the conjugated sp2 bonded carbon network and the subsequent electrical and thermal conductivity through a significant reduction of oxygen-containing functional groups while maintaining the hydrophilicity of the composite photothermal material. In the solar simulated interfacial desalination study conducted using 3.5 wt.% saline water, the average surface temperatures of the 3D material increased from 27.1 to 54.7 °C in an hour, achieving an average net dark-excluded evaporation rate of 1.40 kg m-2 h-1 and a photothermal conversion efficiency of ~ 97.54% under 1 sun solar irradiance. In the outdoor real-world application test carried out, the surface temperature of the 3D solar evaporator reached up to 60 °C and achieved a net water evaporation rate of 1.50 kg m-2 h-1 under actual solar irradiation. The 3D interwoven porous hierarchical evaporator displayed no salt precipitation over the 54-h period monitored, demonstrating the promising salt rejection and real-world application potential for efficient desalination of saline water.

2.
Sci Rep ; 10(1): 16680, 2020 10 07.
Article in English | MEDLINE | ID: mdl-33028867

ABSTRACT

Cuprous oxide nanoparticles (Cu2O NPs) were fabricated in reverse micellar templates by using lipopeptidal biosurfactant as a stabilizing agent. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectrum (EDX) and UV-Vis analysis were carried out to investigate the morphology, size, composition and stability of the nanoparticles synthesized. The antibacterial activity of the as-synthesized Cu2O NPs was evaluated against Gram-positive B. subtilis CN2 and Gram-negative P. aeruginosa CB1 strains, based on cell viability, zone of inhibition and minimal inhibitory concentration (MIC) indices. The lipopeptide stabilized Cu2O NPs with an ultra-small size of 30 ± 2 nm diameter exhibited potent antimicrobial activity against both Gram-positive and Gram-negative bacteria with a minimum inhibitory concentration of 62.5 µg/mL at pH5. MTT cell viability assay displayed a median inhibition concentration (IC50) of 21.21 µg/L and 18.65 µg/mL for P. aeruginosa and B. subtilis strains respectively. Flow cytometric quantification of intracellular reactive oxygen species (ROS) using 2,7-dichlorodihydrofluorescein diacetate staining revealed a significant ROS generation up to 2.6 to 3.2-fold increase in the cells treated with 62.5 µg/mL Cu2O NPs compared to the untreated controls, demonstrating robust antibacterial activity. The results suggest that lipopeptide biosurfactant stabilized Cu2O NPs could have promising potential for biocompatible bactericidal and therapeutic applications.

3.
J Hazard Mater ; 393: 122319, 2020 07 05.
Article in English | MEDLINE | ID: mdl-32120206

ABSTRACT

Uniformly dispersed silver nanoparticles (AgNPs) with remarkable colloidal stability were synthesised using chemical reduction method in lipopeptide biosurfactant reverse micelles. Transmission Electron microscopy (TEM), Scanning electron microscopy (SEM) and UV-vis spectroscopy analysis exhibited monodisperse nanoparticles with spherical morphology of diameter of 21 ±â€¯2. The lipopeptide stabilized AgNPs displayed remarkable antibacterial activity with minimum inhibitory concentration (MIC) value of 15.625 µg/mL against Gram-negative Pseudomonas aeruginosa CB1 and Gram-positive Bacillus subtilis CN2 strains with a significant dose-dependent reduction of cell viability and loss of membrane integrity. Investigation of AgNPs internalization and dissolution assays demonstrated 42-fold higher leaching of the lipopeptide-stabilized AgNPs compared to the bare AgNPs, and concentration dependent increase in cellular uptake with subsequent damage to intracellular organelles. Further ultrastructural observation using TEM revealed internalization and strong binding of considerable amount of AgNPs on the lipopolysaccharide layer of the Gram-negative and peptidoglycans layer of Gram-positive bacteria indiscriminately, demonstrating robust antibacterial activity and potential application to treat multidrug resistant bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Lipopeptides/chemistry , Metal Nanoparticles/chemistry , Silver/pharmacology , Surface-Active Agents/chemistry , Anti-Bacterial Agents/chemistry , Bacillus subtilis/drug effects , Microbial Sensitivity Tests , Microbial Viability/drug effects , Pseudomonas aeruginosa/drug effects , Reactive Oxygen Species/metabolism , Silver/chemistry
4.
J Environ Manage ; 196: 261-269, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28288360

ABSTRACT

A biosurfactant producing culture of bacteria was isolated from an automobile engine oil dump site which was later used as an inoculum in batch and continuous flow oil recovery from oily sludge. Initially, an emulsion of oily sludge was prepared by mixing 5% m/v solids: 21% v/v bituminous sludge: 77% v/v water. The isolated cultures were added to vessels with stable emulsions to facilitate the separation of oil droplets from the sludge matrix. In batches with live cultures, up to 35% oil recovery was achieved after incubation for 10 days. Further investigations were conducted in a semi-continuous feed, fed-batch plug flow reactor (FB-PFR) system. Up to 99.7% was achieved in the FB-PFR after operation for 10 days, much higher than the recovery achieved in the pure batch systems where only 35% oil was recovered after incubation for 10 days. The improved performance in the FB-PFR was attributed to differential separation of particles under variable velocity along the reactor. The culture in the reactor was predominated by Klebsiellae, Enterobacteriaceae and Bacilli throughout the experiment. A crude biosurfactant produced by the cultures was partially purified and analyzed using the liquid chromatograph coupled to a tandem mass spectrometer (LC-MS/MS) which showed that the molecular structure of the biosurfactant produced closely matched the structure of lipopeptides identified in earlier studies. This process is aimed at recovering useful oil from oily waste sludge with the added advantage of degrading aromatic organic impurities in the oil to produce a cleaner oil product. The further advantage of the FB-PFR system was that, the bacteria discharged together with effluent sludge residue further degraded chemical oxygen demand (COD) in the treated sludge thereby reducing the polluting potential of the final disposed sludge.


Subject(s)
Hydrocarbons , Sewage , Bacteria , Surface-Active Agents , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...