Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Org Chem ; 89(13): 9666-9671, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38877990

ABSTRACT

A cobalt catalyst, under oxidative conditions, facilitates the single electron transfer process in N-pyridyl arylacetamides to form α-carbon-centered radicals that readily react with molecular oxygen, giving access to mandelic acid derivatives. In contrast to the known benzylic hydroxylation approaches, this approach enables chemo- and regioselective hydroxylation at a benzylic position adjacent to (N-pyridyl)amides. Mild conditions, broad scope, excellent selectivity, and wide synthetic practicality set up the merit of the reaction.

2.
Chemistry ; 30(1): e202302812, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37807759

ABSTRACT

In Nature, enzymatic reactions proceed through exceptionally ordered transition states giving rise to extraordinary levels of stereoselection. In those reactions, the active site of the enzyme plays crucial roles - through one position, it holds the substrate in the proximity to the reaction epicentre that facilitates both the reactivity and stereoselectivity of the chemical process. Inspired by this natural phenomenon, synthetic chemists have designed bifunctional ligands that not only coordinate to a metal centre but also preassociate with an organic substrate, for example aldehyde and ketone, and exerts stereodirecting influence to accelerate the attack of the incoming reacting partner from a particular enantiotopic face. The chief goal of the current review is to give an overview of the recently developed approaches enabled by privileged bio-inspired bifunctional ligands that not only bind to the metal catalyst but also activates carbonyl substrates via organocatalysis, thereby easing in the new bond forming step. As carbonyl α-functionalizations are dominated by enamine and enolate chemistry, the current review primarily focusses on enamine- and enolate-metal catalysis by bifunctional ligands. Thus, developments based on traditional cooperative catalysis occurring through two directly coupled but independent catalytic cycles of an organocatalyst and a metal catalyst are not covered.

3.
Chem Commun (Camb) ; 59(77): 11544-11547, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37675779

ABSTRACT

The copper-catalyzed α-oxygenation of aryl benzyl ketones is merged with a unique water/O2-induced release of cyanide ions from K3Fe(CN)6 and a benzil-cyanide reaction. This strategy gives expedient access to cyanohydrin esters starting directly from broadly accessible aryl benzyl ketones. The cyanide release strategy was further integrated with a copper catalyzed oxygenation-decarbonylation sequence to produce cyanohydrin esters from 1,3-diketones.

4.
Dalton Trans ; 52(42): 15530-15538, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37701939

ABSTRACT

A series of Ag(I) supramolecular organo-aqueous gels have been synthesized in the presence of an amine-rich triazole ligand as a gelator. Judicious choice of the triazole derivative and counter anion allows a desired spatial orientation of the pendant amine functionality to accentuate the gelation ability and autonomous self-healability via hydrogen bonding. In addition, the hydrogen bond donors, i.e. pendant -NH2 groups, offer a critical proximity of counter anions to the Lewis acidic Ag(I) and the reactants for promoting a three component coupling reaction of an aldehyde, a terminal alkyne and an amine, giving expedient access to propargyl amines, with remarkable functional group tolerance for both aromatic and aliphatic aldehydes, and aryl acetylenes. Experiments substantiate the pivotal role of counter anions and H-bonding interactions in the observed preference for propargylamines over the diacetylene by-product. Our catalyst is robust, bench-stable, and recyclable, and demonstrates a catalytic efficiency comparable to or better than those of reported systems. The catalyst was found equally effective for the gram-scale synthesis of propargylamines. Our approach lies at the intersection of metal-based, H-bond-mediated counter anion-tuned catalysis, evincing a potential for the development of purpose-built supramolecular gels for desired catalytic applications in the future.

5.
Org Biomol Chem ; 21(28): 5691-5724, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37401531

ABSTRACT

Chemists learn the most important transformations of the carboxylic acid functionality (COOH) from as early as the first semester of their studies. Carboxylic acids are not only safe to store and handle, but also broadly accessible with great structural diversity either from commercial sources or by means of a large variety of well-known synthesis routes. Consequently, carboxylic acids have long been recognized as a highly adaptable starting material in organic synthesis. A large body of reactions of carboxylic acids are based on catalytic decarboxylative conversions, in which the COOH group of carboxylic acids is catalytically replaced without trace by extrusion of CO2 chemo- and regioselectively. Within the last two decades, the area of catalytic decarboxylative transformations has expanded significantly by utilizing various classes of carboxylic acids as the substrate, including (hetero)aromatic acids, alkyl acids, α-keto acids, α,ß-unsaturated acids and alkynoic acids. A literature survey reveals that compared to aromatic acids, the number of original research papers on decarboxylative reactions of α-keto acids, α,ß-unsaturated acids and alkynoic acids has been rising every year lately, particularly within past five to six years. The prime aim of the current review is to give an overview of the decarboxylative transformations of α-keto acids, α,ß-unsaturated acids and alkynoic acids that have been developed since 2017. The article focuses on the decarboxylative functionalizations that occur in the presence or absence of transition metal catalysts and/or under photoredox catalysis.

6.
J Org Chem ; 88(3): 1884-1889, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36646442

ABSTRACT

A copper-based system allows for the methylene insertion between an amine and a milder nucleophile, including a terminal alkyne counterpart, via C-N bond cleavage of N,N-dimethylacetamide. The method gives an expedient access to propargylic amines in good to excellent yields. A wide-ranging substrate scope and late-stage functionalization of complex molecules make the protocol practically valuable.

7.
J Org Chem ; 87(15): 10366-10371, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35852799

ABSTRACT

A monoprotected amino acid Bz-Gly-OH assists in the allylic alkylation of a variety of ketones, ß-keto esters, aldehydes, etc., during enamine-palladium catalysis. Density functional theory calculations reveal that Bz-Gly-OH assists in the formation of an enamine that attacks the π-allylpalladium complex via an outer sphere mechanism. The preliminary result points to an asymmetric allylic alkylation under a new mode of bifunctional catalysis.


Subject(s)
Palladium , Alkylation , Alkynes , Catalysis , Ligands , Palladium/chemistry , Stereoisomerism
8.
J Org Chem ; 87(9): 6330-6335, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35412824

ABSTRACT

In general, the α-functionalization of carboxylic acid derivatives requires either a transition metal catalyst or a stoichiometric activating agent/strong base/external additive. A transition metal free α-chalcogenation of aliphatic carboxylic acid equivalents is reported herein via ion pair formation using K3PO4 as a catalyst. Mild conditions, broad scope, scalability of the process, attaining bioactive glucokinase activators, and some synthetic intermediates establish merits of the strategy.


Subject(s)
Fatty Acids , Transition Elements , Carboxylic Acids , Catalysis , Transition Elements/chemistry
10.
J Org Chem ; 87(2): 1512-1517, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35012315

ABSTRACT

An elegant and catalytic procedure for the one-step cyanomethylenation of C(sp3)-H bonds adjacent to benzazoles and ketones is described herein using DMF as a C-1 unit and TMSCN as the cyanide source. The copper-mediated reaction between DMF and TMSCN gives a cyanomethylene radical intermediate that reacts with 2-alkylbenzazoles or alkylketones to furnish desired cyanomethylenated compounds under palladium catalysis. Subsequent interconversion of cyanomethylenated products makes the protocol synthetically attractive.

11.
J Org Chem ; 85(20): 13363-13374, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32998508

ABSTRACT

A unique α-amination approach using various anilines has been developed for arylacetic acids via adaptation as benzazoles. The reaction proceeds through a single electron transfer mechanism utilizing an iron-based catalyst system to access α-(N-arylamino)acetic acid equivalents. Modification of approved drugs, facile cleavage of the benzazole auxiliary, and tolerance of amide linkage forming conditions constitute the potential applicability of this strategy.

12.
Chem Asian J ; 15(6): 673-689, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32027467

ABSTRACT

In contrast to traditional multistep synthesis, modern organic synthesis extensively depends on the direct functionalization of unactivated C-H bonds for the construction of various C-C and C-heteroatom bonds in atom- and step-economic manner. Common aliphatic substrates, e. g. carboxylic acids and their synthetic equivalents, are regiospecifically functionalized based on either a directed approach, in which the polar directing group assists to functionalize a specific C-H bond positioned at ß- and γ-carbon centers, or a non-directed approach typically leading to α-functionalization. While numerous reviews on catalytic C-H functionalization have appeared, a concise review on the direct C(sp3 )-H heterofunctionalization of carboxylic acid synthons with Group 16 elements has been awaited. The recent advances on the direct oxy-functionalization and chalcogenation of aliphatic carboxylic acid synthons enabled by transition metal, organo- and photocatalysts are described herein.

13.
Org Lett ; 21(15): 6164-6168, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31322346

ABSTRACT

A novel approach to α-chalcogenation of aliphatic carboxylic acids has been developed by means of transforming them as the corresponding benzazoles. The catalyst system, consisting of CuI, DMSO, and a base, operates through a unique mechanism to access a range of practically significant thio- and selenoethers that are otherwise challenging to achieve. The applicative potentials have been exemplified by utilizing the resultant chalcogenated compounds as the precursor for the synthesis of biologically pertinent molecules and synthetic intermediates.

14.
Org Biomol Chem ; 17(13): 3314-3318, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30860234

ABSTRACT

The Pd(OAc)2/PhI(OAc)2 catalyst system promotes the highly regioselective dehydrogenative methoxylation of a C(sp3)-H bond adjacent to benzoxazole and benzothiazole rings. The title transformation constitutes the first example of a Pd-catalyzed C(sp3)-H activating methoxylation at the proximal-selective α-position with regard to a directing auxiliary and provides expedient access to an important class of azole-decorated methyl ethers (up to 90% isolated yield). The synthetic practicality of the methodology was demonstrated by achieving α-methoxyacetic acids via the elimination of the benzoxazole auxiliaries and by obtaining the precursor of an O-methylated Breslow intermediate.

15.
Org Biomol Chem ; 16(20): 3716-3720, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29736546

ABSTRACT

A highly regioselective de-aryloxylative amination of O- or N-chelating group-functionalized 2-aryloxy quinolines has been accomplished by means of a copper catalyst. The chelating functional groups of the substrate play a crucial role in directing the C-2-selective amination process, which proceeds through a novel aromatic nucleophilic substitution of the aryloxy group. The methodology provides expedient access to an important class of functionalized 2-aminoquinolines (up to 88% isolated yield) and was successfully applied for the synthesis of a key fragment of an important bioactive PRMT5 inhibitor.

16.
Chem Rev ; 118(7): 3391-3446, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29570284

ABSTRACT

Historically, reagent controlled reactions (mechanism controlled reactions) have played a significant role in the asymmetric synthesis of complex structures. In contrast, today's asymmetric synthesis is greatly dependent on substrate directed approaches. In this approach, a polar functional group, namely, a "directing group", in the vicinity of the reactive site inside the substrate has been documented to preassociate with the chiral catalyst, which exerts stereodirecting influence by directing the reacting partner toward one of the enantiotopic faces of the reaction center. Those reactions usually proceed through exceptionally ordered transition states and result in extraordinary levels of stereoselection. Within the last four decades, the substrate directed approach has become an indispensible tool for the preparation of complex chiral frameworks starting directly from relatively simple achiral substrate molecules via asymmetric induction or various resolution techniques or both. Likewise, the substrate directed approach has been applied to functionalize enantiopure substrates bearing pre-exisiting stereocenters into complex structures as a single diastereomer. A classical example is Sharpless asymmetric epoxidation of allylic alcohols in which the free hydroxy function acts as an active anchor to a dimeric Ti-catalyst that controls the stereochemical outcome of the epoxidation process by transferring the oxidant enantioselectively. The principal aim of the present review is to give a general overview of substrate directed asymmetric transformations, a topic that has not yet been documented in the form of a concise review of recently developed approaches. Due to the large number of related applications, only recent advances that have been documented within the last two decades have been reviewed. Furthermore, in the current review, we have mainly highlighted asymmetric reactions that are controlled by abundant and frequently used directing groups such as hydroxy, amide, and sulfonamide groups. In addition, selected examples of a few important substrate-directed chemo-, regio-, and diastereoselective reactions have also been included in this review.

17.
Angew Chem Int Ed Engl ; 55(42): 13043-13046, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27653750

ABSTRACT

Direct asymmetric synthesis of N-chiral amine oxides was accomplished (up to 91:9 e.r.) by means of a bimetallic titanium catalyst. A hydroxy group situated at the γ-position of the N stereocenter enables the desired N-oxidation through dynamic kinetic resolution of the trivalent amine substrates. The method was further extended to the kinetic resolution of racemic γ-amino alcohols with a preexisting stereocenter, giving an important class of enantioenriched (up to 99.9:0.1 e.r.) building blocks that are otherwise difficult to synthesize.

18.
J Am Chem Soc ; 137(50): 15612-5, 2015 Dec 23.
Article in English | MEDLINE | ID: mdl-26650178

ABSTRACT

A new chiral tethered 8-quinolinol-based ligand class is developed. The binuclear titanium complex of the ligand operates through a novel mechanism allowing for the regio- and stereoselective epoxidation of primary and tertiary homoallylic alcohols (up to 98% ee), as well as first examples of 2-allylic phenols (up to 92% ee). The new catalyst system also promotes the asymmetric oxidation of γ-hydroxypropyl sulfides giving an important class of chiral sulfoxides that have been inaccessible to date (up to 95% ee).

19.
Chemistry ; 19(46): 15759-68, 2013 Nov 11.
Article in English | MEDLINE | ID: mdl-24123356

ABSTRACT

A selective N-arylation of cyclic amides and amines in DMF and water, respectively, catalysed by Cu(II) /Al2 O3 has been achieved. This protocol has been employed for the synthesis of a library of arenes bearing a cyclic amide and an amine moiety at two ends, including a few scaffolds of therapeutic importance. The mechanism has been established based on detailed electron paramagnetic resonance (EPR) spectroscopy, X-ray photoelectron spectroscopy (XPS), UV diffuse reflectance spectroscopy (DRS) and inductively coupled plasma-mass spectrometry (ICP-MS) studies of the catalyst at different stages of the reaction. The Cu(II) /Al2 O3 catalyst was recovered and recycled for subsequent reactions.


Subject(s)
Amides/chemistry , Amines/chemistry , Copper/chemistry , Hydrocarbons, Halogenated/chemistry , Solvents/chemistry , Catalysis , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Molecular Structure , Photoelectron Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...