Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(31): 10947-10964, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37501125

ABSTRACT

A series of pyrrolidine-based Pd(II) complexes, [Pd(AEP)Cl2] (C-1), [Pd(AEP)(OH2)2]2+(C-2), [Pd(AEP)(L-cys)]+ (C-3), [Pd(AEP)(N-ac-L-cys)] (C-4), [Pd(AEP)(GSH)] (C-5), and [Pd(AEP)(DL-meth)]2+ (C-6) (where, AEP = 1-(2-aminoethyl)pyrrolidine, L-cys = l-cysteine, N-ac-L-cys = N-acetyl-l-cysteine, GSH = glutathione, and DL-meth = dl-methionine), as anticancer drug candidates have been synthesized and characterized. The DNA binding property of the complexes was executed by gel electrophoresis and spectrophotometric and viscometric methods, and their interaction with BSA was also investigated by various spectroscopic methodologies. The binding activity of the Pd(II) complexes with DNA and BSA were assessed to evaluate their binding mode and binding constants. Molecular docking was performed to correlate with the experimental results on the interaction of the complexes with DNA and BSA. The changes in the microenvironmental and structural properties of BSA are monitored by a synchronous and 3D fluorescence study. The structural properties were evaluated by DFT and TD-DFT studies. The anticarcinogenic activity of the Pd(II) complexes was assessed by PASS prediction software to corroborate with the experimental results of the anticancer activity of the complexes. The ROS generation in cancer cell lines has been investigated, and the cell death mechanism through apoptosis was confirmed by measuring the protein expression. All these complexes have excellent anticancer activity compared to ancillary ligands. The cancer cell line (HCT116) shows almost similar or better cell inhibition activity when treated with the Pd(II) complexes compared to cisplatin, whereas the adverse effect is minimum on a normal cell (NKE). Both the Pd(II) and Pt(II) complexes carrying the same ligands reveal almost similar antiproliferative activity.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Humans , Molecular Docking Simulation , Palladium/pharmacology , Palladium/chemistry , Ligands , DNA/chemistry , Cell Line , Antineoplastic Agents/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Serum Albumin, Bovine/chemistry
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 1): 122059, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36410178

ABSTRACT

The complex [Pt(AEP)Cl2]; C-1 (where, AEP = 1-(2-Aminoethyl) pyrrolidine) and its hydrolyzed diaqua form cis-[Pt(AEP)(H2O)2]2+; C-2 were synthesized for their bioactivity and in vitro kinetic study with bioactive thiol group (-SH) containing ligands (like; L- cysteine and N-ac-L- cysteine) for their biological importance for 'drug reservoir' activity. The Thermal Gravimetric Analysis (TGA) was executed to confirm about the weight loss due to coordinated water molecules at high temperature range. At pH 4.0, the substitution behavior of C-2 with the thiols was studied in pseudo-first order reaction condition. The interaction mechanism of thiols with complex C-2 to their corresponding thiol substituted C-3 [Pt(AEP)(L-cys)] and C-4 [Pt(AEP)(N-ac-L-cys)] (where L-cys = L-cysteine and N-ac-L-cys = N-ac-L- cysteine) were proposed from their thermodynamical activation parameters (ΔH≠ and ΔS≠), which were obtained from Eyring equation. DNA and BSA binding activity of the complexes C-1 to C-4 were investigated by gel electrophoresis technique, spectroscopic titration and viscosity methods. The binding activity of the complexes with DNA and BSA was evaluated using a theoretical approach molecular docking study. The drug-like nature of the complexes is supported by the prediction of activity spectra for substance (PASS) from 2D structure of the Pt(II) complexes. Structural optimization, HOMO-LUMO energy calculation, Molecular electrostatic potential surface, NBO and TD-DFT calculation were executed by using density functional theory (DFT) with Gaussian 09 software package to pre-assessment of biological activity of the complexes. DFT-based descriptors were determined from the HOMO-LUMA energy to be related with the ability of binding affinity of Pt(II) complexes towards DNA and BSA to the formation of their corresponding adducts. The anticancer property of the design complexes were examined on HCT116 (colorectal carcinoma) cancer cell lines and as well as human normal cell NKE (Normal Kidney Epithelial) and compared with the recognised anticancer drug cisplatin. The Reactive Oxygen Species (ROS) production was assessed by DCFDA assay in presence of the Pt(II) complexes.


Subject(s)
Cysteine , DNA , Humans , Molecular Docking Simulation , Kinetics , Pyrrolidines , Sulfhydryl Compounds
3.
Bioorg Chem ; 128: 106093, 2022 11.
Article in English | MEDLINE | ID: mdl-35985157

ABSTRACT

Herein, we report the synthesis and characterisation of a series of Pd(II) complexes: Pd(TEEDA)Cl2, C-1; [Pd(TEEDA)(OH2)2](NO3)2, C-2; [Pd(TEEDA)(l-cys)](NO3)2, C-3; [Pd(TEEDA)(NALC)], C-4; [Pd(TEEDA)(Meth)](NO3)2, C-5; and [Pd(TEEDA)(GSH)], C-6 (where TEEDA = N,N,N'-Triethylenediamine, l-cys = l-cysteine, NALC = N-acetyl-l-cysteine, Meth = dl-methionine and GSH = glutathione). UV-Vis spectroscopic characterisation was supported by TD-DFT theoretical simulation using Gaussian09 software. Different reactivity parameters were calculated from the energy difference between HOMO and LUMO of the complexes by DFT. The bonding mode of the labile ligands was confirmed by NBO analysis. Interaction of the complexes with DNA has been observed by gel electrophoresis experiment. DNA binding nature as well as binding constants of the complexes were measured with UV-Vis and fluorescence spectroscopic method. The binding nature of the complexes with DNA was confirmed by viscometric titration. Interaction of the complexes with BSA was investigated by UV-Vis and fluorescence titration method. Cytotoxic activity of the Pd(II) complexes was evaluated on A549 (lung carcinoma epithelial cells), HCT116(Colorectal Carcinoma) and HEK293 (Human embryonic kidney cells) cell lines. The ROS generation in the presence of the complexes was tested both on cancer cell lines A549 and HCT116 as well as human normal cell HEK293.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , DNA/chemistry , HEK293 Cells , Humans , Molecular Docking Simulation , Neoplasms/drug therapy , Palladium/chemistry , Palladium/pharmacology , Serum Albumin, Bovine/chemistry
4.
J Mol Graph Model ; 117: 108314, 2022 12.
Article in English | MEDLINE | ID: mdl-36041352

ABSTRACT

The properties to be an active drug candidate of the complex Pt(TEEDA)Cl2, C1; Pd(TEEDA)Cl2, C2 and their hydrolysed product [Pt(TEEDA)(OH2)2]2+, C1' and [Pd(TEEDA)(OH2)2]2+, C2' were predicted by Lipinski's rule of 5 and PASS (prediction of activity spectra for substances) web tool. Their structural profile, HOMO-LUMO energy and electronic potential surface ware analysed by DFT calculation. Their TD-DFT spectra were compared with experimental UV-Vis spectra. The hydrolysis mechanisms of C1 & C2 to the diaqua form C1' and C2' were extensively investigated by DFT method in different levels of theory and using CPCM/water model and compared with recognised Pt based anticancer drugs. All the stationary states, including the transition state for the reactions were identified by the DFT calculation. The IRC calculation confirmed that the transition states are well connected and corelate with reactants and products. Interaction of the complexes with DNA & HSA was also investigated by molecular docking study.


Subject(s)
Antineoplastic Agents , Cisplatin , Antineoplastic Agents/chemistry , Cisplatin/chemistry , DNA/chemistry , Density Functional Theory , Hydrolysis , Molecular Docking Simulation , Water
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120096, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34214741

ABSTRACT

Pt(II) complex cis-[Pt(PEA)(OH2)2] X2, C-2 (where, PEA = 2-Pyridylethylamine and X  = ClO4- or NO3-) was synthesized by hydrolysis of cis-[Pt(PEA)Cl2] C-1. Glutathione (GSH) and DL-penicilamine (DL-pen) substituted complexes cis-[Pt(PEA)(GSH)],C-3 and cis-[Pt(PEA)DL-pen)]X C-4 were synthesized and characterized by spectroscopic methods. Kinetic studies were traced on complex C-2 with the thiols, GSH and DL-pen. Pt(II)-Sulfur adduct formation mechanisms of the substituted products C-3 and C-4 were established from the kinetic investigation. At pH 4.0, C-2 - thiols interactions follow two consecutive steps: the first step is dependent, and the second is independent of [thiol]. The association equilibrium constant (KE), substitution rate constants for both steps (k1 & k2), and activation parameters (ΔH‡ and ΔS‡) have been assessed to propose the mechanism. Agarose gel electrophoresis mobilization pattern of DNA with complexes was performed to visualize the interaction nature. CT-DNA and BSA binding activities of the complexes have been executed by electronic, fluorescence spectroscopy, and viscometric titration methods. Evaluation of thermodynamic parameters (ΔH0, ΔS0, and ΔG0) from BSA binding constants was executed to propose the driving forces of interaction between these species. A molecular docking study was performed to evaluate the binding mode of complexes with BDNA strands. Anticancer activity of the complexes C-1 to C-4 was explored on both A549 and HEp-2 cell lines, compared with approved anticancer drugs cisplatin, carboplatin, and oxaliplatin. All these complexes were tested by NBT assay on normal cell line skeletal muscle cells (L6 myotubes) to observe the adverse effects compared to recognized anticancer medications. The ultimate aim is to explore the role of anticancer agents on cell death mechanism, which has been performed by flow-cytometer on HEp-2 cell lines.


Subject(s)
Antineoplastic Agents , DNA Adducts , Antineoplastic Agents/pharmacology , Cell Death , Cisplatin , Kinetics , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...