Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 350: 141071, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160958

ABSTRACT

Arsenic (As) is a heavy toxic metalloid found in air, water and soil that adversely affects the plant growth by inducing oxidative stress in plants. Its contamination of rice is a serious problem throughout the world. Selenium (Se) is a beneficial micronutrient for plants that acts as an antioxidant at low doses and protect the plants against number of environmental stresses either by modulating the primary metabolic pathways or regulating the production of phenolic compounds. In the present investigation, effect of Se on different phenolics, enzymes related to their metabolism and antioxidative potential were studied in As stressed rice leaves. Rice plants were grown in pots containing sodium arsenate (2-10 mg As(V) kg-1 soil) and sodium selenate (0.5-1 mg Se kg-1 soil), both alone and in combination and leaf samples were analyzed for various biochemical parameters. Phenolic constituents increased in rice leaves with As(V) treatment from 2 to 5 mg kg-1 soil and leaves exposed to As(V) @ 5 mg kg-1 soil exhibited 1.7, 1.9 and 2.5 fold increase in total phenolics, o-dihydroxyphenols and flavonols, respectively at grain filling stage. Binary application of Se + As improved various phenolic constituents, FRAP, reducing power and antioxidant activities as compared to control. PAL, TAL and PPO activities increased from 1.3 to 4.6 fold in combined As + Se treatment at both the stages. Anthocyanin contents showed a decline (10.8 fold) with increasing As doses and its content improved at both the stages with maximum increase of 3.76 fold with As5+Se1 combination. Binary application of As + Se improved gallic acid, chlorogenic acid, 3-hydroxy benzoic acid and kaempferol contents than control whereas catechin and coumaric acid showed the reverse trend. Application of Se can modulate phenolic constituents in leaf and grains of rice Cv PR126 due to As stress that helped plants to adapt to excess As and resulted in improved plant growth.


Subject(s)
Arsenic , Oryza , Selenium , Antioxidants/pharmacology , Antioxidants/metabolism , Selenium/pharmacology , Selenium/metabolism , Arsenic/metabolism , Oryza/metabolism , Soil
2.
Environ Sci Pollut Res Int ; 29(47): 70862-70881, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35589895

ABSTRACT

A green house experiment was conducted to evaluate the efficacy of soil application of selenium (Se) in modulating metabolic changes in rice under arsenic (As) stress. Rice plants were grown over soil amended with sodium arsenate (25, 50 and 100 µM kg-1 soil) with or without sodium selenate @ 0.5 and 1 mg kg-1 soil in a complete randomized experimental design, and photosynthetic efficiency, nutrient uptake and nitrogen metabolism in rice leaves were estimated at tillering and grain filling stages. Se treatments significantly improved the toxic effects of As on plant height, leaf dry weight and grain yield. Arsenate treatment reduced uptake of Na, Mg, P, K, Ca, Mn, Fe and Zn and lowered chlorophyll, carotenoids and activities of enzymes of nitrogen metabolism (nitrate reductase, nitrite reductase, glutamine synthase and glutamate synthase) in rice leaves at both the stages in a dose-dependent fashion. Se application along with As improved photosynthesis, nutrient uptake and arsenate-induced effects on activities of enzymes of nitrogen metabolism with maximum impact shown by As50 + Se1 combination. Application of Se can modulate photosynthetic efficiency, nutrient uptake and alterations in nitrogen metabolism in rice Cv PR126 due to As stress that helped plants to adapt to excess As and resulted in improved plant growth.


Subject(s)
Arsenic , Oryza , Selenium , Arsenates/metabolism , Arsenic/metabolism , Carotenoids/metabolism , Chlorophyll/metabolism , Edible Grain/metabolism , Glutamate Synthase/metabolism , Glutamine/metabolism , Glutamine/pharmacology , Nitrite Reductases/metabolism , Nitrogen/metabolism , Nutrients , Oryza/metabolism , Photosynthesis , Plant Leaves/metabolism , Selenic Acid/metabolism , Selenium/metabolism , Selenium/pharmacology , Soil
3.
J Food Sci Technol ; 54(9): 2704-2716, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28928510

ABSTRACT

Present study was undertaken to optimize the process conditions for development of food grains (maize, defatted soy flour, sesame seed)-banana based nutritious expanded snacks using extrusion processing. Experiments were designed using Box-Behnken design with banana pulp (8-24 g), screw speed (300-350 rpm) and feed moisture (14-16% w.b.). Seven responses viz. expansion ratio (ER), bulk density (BD), water absorption index (WAI), protein, minerals, iron and sensory acceptability were considered for optimizing independent parameters. ER, BD, WAI, protein content, total minerals, iron content, and overall acceptability ranged 2.69-3.36, 153.43-238.83 kg/m3, 4.56-4.88 g/g, 15.19-15.52%, 2.06-2.27%, 4.39-4.67 mg/100 g (w.b.) and 6.76-7.36, respectively. ER was significantly affected by all three process variables while BD was influenced by banana pulp and screw speed only. Studied process variables did not affected colour quality except 'a' value with banana pulp and screw speed. Banana pulp had positive correlation with water solubility index, total minerals and iron content and negative with WAI, protein and overall acceptability. Based upon multiple response analysis, optimized conditions were 8 g banana pulp, 350 rpm screw speed and 14% feed moisture indicating the protein, calorie, iron content and overall sensory acceptability in sample as 15.46%, 401 kcal/100 g, 4.48 mg/100 g and 7.6 respectively.

4.
J Food Sci Technol ; 53(4): 1834-44, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27413210

ABSTRACT

Present study was undertaken to optimize the level of food materials viz. groundnut meal, beetroot juice and refined wheat flour for development of nutritious pasta using response surface methodology. Box-benken design of experiments was used to design different experimental combinations considering 10 to 20 g groundnut meal, 6 to 18 mL beetroot juice and 80 to 90 g refined wheat flour. Quality attributes such as protein content, antioxidant activity, colour, cooking quality (solid loss, rehydration ratio and cooking time) and sensory acceptability of pasta samples were the dependent variables for the study. The results revealed that pasta samples with higher levels of groundnut meal and beetroot juice were high in antioxidant activity and overall sensory acceptability. The samples with higher content of groundnut meal indicated higher protein contents in them. On the other hand, the samples with higher beetroot juice content were high in rehydration ratio and lesser cooking time along with low solid loss in cooking water. The different level of studied food materials significantly affected the colour quality of pasta samples. Optimized combination for development of nutritious pasta consisted of 20 g groundnut meal, 18 mL beetroot juice and 83.49 g refined wheat flour with overall desirability as 0.905. This pasta sample required 5.5 min to cook and showed 1.37 % solid loss and rehydration ratio as 6.28. Pasta sample prepared following optimized formulation provided 19.56 % protein content, 23.95 % antioxidant activity and 125.89 mg/100 g total phenols with overall sensory acceptability scores 8.71.

SELECTION OF CITATIONS
SEARCH DETAIL
...