Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 300(1): 279-85, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16707131

ABSTRACT

The experimental results on the synthesis of flexible and superhydrophobic silica aerogels using methyltrimethoxysilane (MTMS) precursor by a two-step (acid-base) sol-gel process followed by the supercritical drying, are reported. The effects of various sol-gel parameters on the flexibility of the aerogels have been investigated. The aerogels of different densities were obtained by varying the molar ratio of MeOH/MTMS (S) from 14 to 35, with lower densities for larger S values. It has been observed that the Young's modulus (Y) decreased from 14.11 x 10(4) to 3.43 x 10(4) N/m(2) with the decrease in the density of the aerogels from 100 to 40 kg/m(3). Simultaneously, the aerogels are superhydrophobic with a contact angle as high as 164 degrees . The superhydrophobic aerogels are thermally stable up to a temperature of 530 K, above which they become hydrophilic. The aerogels have been characterized by bulk density, percentage volume shrinkage, and porosity measurements. The microstructures of the aerogels have been studied using the transmission electron microscopy (TEM). The Young's modulus of the aerogels has been determined by an uniaxial compression test. The variation of physical properties of the aerogels has been explained by taking into consideration the hydrolysis, condensation reactions, the resulting colloidal clusters and their network formation.

2.
J Colloid Interface Sci ; 285(1): 413-8, 2005 May 01.
Article in English | MEDLINE | ID: mdl-15797440

ABSTRACT

The experimental results of the studies on the transportation of water droplets on a superhydrophobic silica aerogel-powder-coated surface are reported. The superhydrophobic silica aerogels were prepared using sol-gel processing of methyltrimethoxysilane (MTMS) precursor, methanol (MeOH) solvent, and base (NH4OH)-catalyzed water followed by supercritical drying using methanol solvent. The molar ratio of NH4OH/MTMS, H2O/MTMS, and MeOH/MTMS were varied from 1.7x10(-1) to 3.5x10(-1), 2 to 8, and 1.7 to 14, respectively, to find out the best-quality aerogels in terms of higher hydrophobicity and high droplet velocity. A specially built device was used for the measurement of velocity of water droplet of size 2.8 mm (+/-0.2 mm) on an inclined surface coated with superhydrophobic aerogel powder. Liquid marbles were prepared by rolling water droplets on aerogel powder and the marble(s) velocities on a noncoated inclined surface were compared with that of the water droplets. It was observed that the microstructure of the aerogel affects the droplet as well as marble velocities considerably. For an aerogel with uniform and smaller particles, the water droplet and marble velocities were observed to be maximum, i.e., 144 and 123 cm/s, respectively, whereas for the aerogels with bigger and nonuniform particles, the water droplet and marble velocities were observed to be minimum, i.e., 92 and 82 cm/s, respectively. The results have been discussed by taking into account the contact angles and microstructural observations.

SELECTION OF CITATIONS
SEARCH DETAIL
...