Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 126(31): 5107-5125, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35901315

ABSTRACT

Electronic interactions between tetrapyrroles are utilized in natural photosynthetic systems to tune the light-harvesting and energy-/charge-transfer processes in these assemblies. Such interactions also can be employed to tailor the electronic properties of tetrapyrrolic dyads and larger arrays for use in materials science and biomedical research. Here, we have utilized static and time-resolved optical spectroscopy to characterize the optical absorption and emission properties of a set of chlorin and bacteriochlorin dyads with varying degrees of through-bond (TB) and through-space (TS) interactions between the constituent macrocycles. The dyads consist of two chlorins or two bacteriochlorins joined by a linker that utilizes a triple-double-triple-bond (enediyne) motif in which the double-bond portion is an ester-substituted ethylene or o-phenylene unit. The photophysical studies are coupled with density functional theory (DFT) calculations to probe the ground-state molecular orbital (MO) characteristics of the dyads and time-dependent DFT calculations (TDDFT) to elucidate excited-state properties. The latter include electronic characteristics of the singlet excited-state manifold and the absorption transitions to these states from the electronic ground state. A comparison of the MO and calculated spectral properties of each dyad with the linker present versus disrupted (by eliminating the double-bond portion) gives insight into the relative contributions of TB versus TS interactions to the electronic properties of the dyads. The results show that the TB and TS contributions are additive (constructively interfere), which is not always the case for molecular dyads. Most of the dyads have shorter lifetimes of the lowest singlet excited state compared to the parent monomer, which derives from increased S1 → S0 internal conversion. The enhancement is greater for the dyads in benzonitrile than in toluene. The studies provide insights into the nature of the electronic interactions between the constituents in the tetrapyrrole arrays and how these interactions dictate the spectral properties and excited-state decay characteristics.


Subject(s)
Photosynthesis , Tetrapyrroles , Electronics , Energy Transfer , Spectrum Analysis , Tetrapyrroles/chemistry
2.
Conserv Biol ; 35(1): 216-226, 2021 02.
Article in English | MEDLINE | ID: mdl-32812277

ABSTRACT

Invasive species have major impacts on biodiversity and are one of the primary causes of amphibian decline and extinction. Unlike other top ant invaders that negatively affect larger fauna via chemical defensive compounds, the Argentine ant (Linepithema humile) does not have a functional sting. Nonetheless, it deploys defensive compounds against competitors and adversaries. We estimated levels of ant aggression toward 3 native terrestrial amphibians by challenging juveniles in field ant trails and in lab ant foraging arenas. We measured the composition and quantities of toxin in L. humile by analyzing pygidial glands and whole-body contents. We examined the mechanisms of toxicity in juvenile amphibians by quantifying the toxin in amphibian tissues, searching for histological damages, and calculating toxic doses for each amphibian species. To determine the potential scope of the threat to amphibians, we used global databases to estimate the number, ranges, and conservation status of terrestrial amphibian species with ranges that overlap those of L. humile. Juvenile amphibians co-occurring spatially and temporally with L. humile die when they encounter L. humile on an ant trail. In the lab, when a juvenile amphibian came in contact with L. humile the ants reacted quickly to spray pygidial-gland venom onto the juveniles. Iridomyrmecin was the toxic compound in the spray. Following absorption, it accumulated in brain, kidney, and liver tissue. Toxic dose for amphibian was species dependent. Worldwide, an estimated 817 terrestrial amphibian species overlap in range with L. humile, and 6.2% of them are classified as threatened. Our findings highlight the high potential of L. humile venom to negatively affect amphibian juveniles and provide a basis for exploring the largely overlooked impacts this ant has in its wide invasive range.


Efectos del Veneno de la Hormiga Argentina sobre los Anfibios Terrestres Resumen Las especies invasoras tienen un impacto importante sobre la biodiversidad y son una de las causas principales del declive y extinción de los anfibios. A diferencia de otras hormigas super-invasoras que afectan negativamente a animales más grandes por medio de compuestos químicos de defensa, la hormiga argentina (Linepithema humile) no tiene unaguijón funcional. Sin embargo, esta hormiga despliega compuestos defensivos contra sus competidores y adversarios. Estimamos los niveles de agresión de las hormigas hacia tres anfibios terrestres nativos exponiendo a los anfibios juveniles en pistas de hormigas en el campo y en las arenas de forrajeo de las hormigas en el laboratorio. Medimos la composición y las cantidades de toxina que presenta L. humile por medio del análisis de las glándulas pigidiales y el contenido en el cuerpo completo. Examinamos los mecanismos de la toxicidad en los anfibios juveniles cuantificando la toxina en el tejido del anfibio, buscando daños histológicos y calculando las dosis tóxicas para cada especie de anfibio. Para determinar el alcance potencial de la amenaza para los anfibios usamos bases de datos mundiales para estimar el número, distribución y estado de conservación de las especies terrestres de anfibios con distribuciones que se solapan con la de L. humile. Los anfibios juveniles que co-ocurren temporal y espacialmente con L. humile mueren al encontrarse con esta especie de hormiga en sus pistas. En el laboratorio, cuando un anfibio juvenil entró en contacto con L. humile, las hormigas reaccionaron rápidamente rociando a estos juveniles con veneno proveniente de las glándulas pigidiales. La iridomyrmecina fue el compuesto tóxico que encontramos en las glándulas pigidiales. Después de ser absorbida por la piel del anfibio, se acumuló en el cerebro, los riñones y el hígado. La dosis tóxica para los anfibios depende de la especie. A nivel mundial, se estima que 817 especies de anfibios terrestres tienen una distribución que se solapa con la de L. humile, y el 6.2% de estas especies se encuentran clasificadas como amenazadas. Nuestros hallazgos resaltan el potencial alto del veneno de L. humile para tener efectos negativos sobre los anfibios juveniles y también proporcionan una base para la exploración de los impactos de esta hormiga en su amplio rango invasivo, los cuales generalmente son ignorados.


Subject(s)
Ant Venoms , Ants , Amphibians , Animals , Behavior, Animal , Conservation of Natural Resources
3.
Nutr Res ; 73: 27-37, 2020 01.
Article in English | MEDLINE | ID: mdl-31841745

ABSTRACT

The pomegranate fruit peel is a rich source of polyphenols including punicalins, punicalagins, and ellagic acids, but is considered an agricultural waste product. Pomegranate derived products have been reported to have a wide variety of health promoting benefits including antibacterial properties in vitro but there is limited evidence of their antibacterial properties in vivo. The purpose of this study was to test the in vivo antibacterial properties of a pomegranate peel extract (PPX) containing punicalin, punicalagin, and ellagic acid. C3H/He mice were orally pre-treated with water or PPX prior to infection with the mouse bacterial pathogen, Citrobacter rodentium (Cr) that mimics many aspects of human enteropathogenic Escherichia coli infections. Fecal excretion of Cr was monitored and mice were euthanized on day 12 post-infection to assess Cr colonization of the colon and spleen, histological changes, and gene expression. PPX-treatment reduced Cr infection induced weight loss and mortality that was observed in water-treated infected mice. However, Cr colonization of the colon and clearance was unaffected by PPX-treatment. Consistent with this, PPX treatment did not alter the potent Th1/Th17 pro-inflammatory response elicited by Cr infection. Significant colonization of the spleen was only seen in water-treated infected mice and was inversely correlated with the dose of PPX administered. PPX treatment decreased the extent of Cr-induced colon damage that correlated with decreased mortality and reduced colonization of the spleen. Thus, a pomegranate peel extract contains bioactive compounds that mitigate the deleterious effects of an in vivo infection with the model enteropathogenic bacteria, Cr.


Subject(s)
Bacterial Translocation/drug effects , Citrobacter rodentium , Colitis/drug therapy , Enterobacteriaceae Infections/drug therapy , Plant Extracts/pharmacology , Pomegranate , Animals , Colon/drug effects , Disease Models, Animal , Mice , Mice, Inbred C3H
4.
J Org Chem ; 84(12): 7851-7862, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31117562

ABSTRACT

Photoisomerization of 3,4-di(methoxycarbonyl)-enediyne linker in hydroporphyrin (chlorin or bacteriochlorin) dyads leads to thermally stable cis isomers, where macrocycles adopt a slipped cofacial mutual geometry with an edge-to-edge distance of ∼3.6 Å (determined by density functional theory (DFT) calculations). Absorption spectra exhibit a significant splitting of the long-wavelength Qy band, which indicates a strong electronic coupling with a strength of V = ∼477 cm-1 that increases to 725 cm-1 upon metalation of hydroporphyrins. Each dyad features a broad, structureless emission band, with large Stokes shift, which is indicative of excimer formation. DFT calculations for dyads show both strong through-bond electronic coupling and through-space electronic interactions, due to the overlap of π-orbitals. Overall, geometry, electronic structure, strength of electronic interactions, and optical properties of reported dyads closely resemble those observed for photosynthetic special pairs. Dyads reported here represent a novel type of photoactive arrays with various modes of electronic interactions between chromophores. Combining through-bond and through-space coupling appears to be a viable strategy to engineer novel optical and photochemical properties in organic conjugated materials.

5.
J Nematol ; 50(2): 147-162, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30451435

ABSTRACT

Vetiver, a nonhost grass for certain nematodes, was studied for the production of compounds active against the southern root-knot nematode, Meloidogyne incognita . In laboratory assays studying the effects on second-stage juvenile (J2) activity and viability, crude vetiver root and shoot extracts were nematotoxic, resulting in 40% to 70% J2 mortality, and were also repellent to J2. Vetiver oil did not exhibit activity against J2 in these assays. Gas chromatography-mass spectrometry analyses of three crude vetiver root ethanol extracts and a commercial vetiver oil determined that two of the major components in each sample were the sesquiterpene acid 3,3,8,8-tetramethyltricyclo[5.1.0.0(2,4)]oct-5-ene-5-propanoic acid and the sesquiterpene alcohol 6-isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydronaphthalen-2-ol. The acid was present in higher amounts in the extracts than in the oil. These studies demonstrating nematotoxicity and repellency of vetiver-derived compounds to M. incognita suggest that plant chemistry plays a role in the nonhost status of vetiver to root-knot nematodes, and that the chemical constituents of vetiver may be useful for suppressing nematode populations in the soil.

6.
J Org Chem ; 83(16): 9076-9087, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30033724

ABSTRACT

A series of chlorin monomers and dyads has been prepared to probe the effect of ethenyl vs ethynyl linkers on the electronic conjugation and optical properties in resulting derivatives. Styryl-substituted chlorins have been prepared either by a Heck reaction or by microwave-assisted olefin metathesis, while ß-ß ethenyl-linked dyads have been synthesized from the corresponding vinyl-substituted chlorin monomer using microwave-assisted olefin metathesis. It has been found that when an ethenyl linker is connected at the ß-position of chlorin it provides stronger electronic conjugation than an ethynyl one, which is manifested by a greater bathochromic shift of the longest wavelength absorption (Q y) and emission bands. Stronger electronic coupling is particularly evident for dyads, where ethenyl-linked dyad exhibits a strong near-IR absorption band emission (λabs = 707 nm, λem = 712 nm, Φf = 0.45), compared to the deep-red absorption and emission of a corresponding ethynyl-linked dyad (λabs = 689 nm, λem = 691 nm, Φf = 0.48). The reactivity of ethenyl-linked dyads with singlet oxygen is discussed as well. The results reported here provide further guidelines for molecular design of deep-red and near-IR absorbing and intensely emitting chlorin derivatives and chlorins with extended π-electronic conjugation for a variety of photonic applications.

7.
Proc Natl Acad Sci U S A ; 115(4): 714-719, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29311316

ABSTRACT

Pheromones and other semiochemicals play a crucial role in today's integrated pest and vector management strategies. These semiochemicals are typically discovered by bioassay-guided approaches. Here, we applied a reverse chemical ecology approach; that is, we used olfactory proteins to lead us to putative semiochemicals. Specifically, we used 7 of the top 10 odorant receptors (ORs) most expressed in the antennae of the southern house mosquito, Culex quinquefasciatus, and which are yet to be deorphanized. We expressed these receptors in the Xenopus oocyte recording system and challenged them with a panel of 230 odorants, including physiologically and behaviorally active compounds. Six of the ORs were silent either because they are not functional or a key odorant was missing. CquiOR36, which showed the highest transcript levels of all OR genes in female antennae, was also silent to all odorants in the tested panel, but yielded robust responses when it was accidentally challenged with an old sample of nonanal in ethanol. After confirming that fresh samples were inactive and through a careful investigation of all possible "contaminants" in the old nonanal samples, we identified the active ligand as acetaldehyde. That acetaldehyde is activating CquiOR36 was further confirmed by electroantennogram recordings from antennae of fruit flies engineered to carry CquiOR36. Antennae of female mosquitoes also responded to acetaldehyde. Cage oviposition and dual-choice assays demonstrated that acetaldehyde is an oviposition attractant in a wide range of concentrations and thus of potential practical applications.


Subject(s)
Acetaldehyde/metabolism , Culex/physiology , Receptors, Odorant/metabolism , Acetaldehyde/chemistry , Animals , Culex/genetics , Culicidae/metabolism , Ecology , Female , Mosquito Vectors/metabolism , Odorants , Oviposition/physiology , Pheromones/metabolism , Pheromones/physiology , Receptors, Odorant/genetics , Smell
8.
J Phys Chem A ; 120(3): 379-95, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26765839

ABSTRACT

Achieving tunable, intense near-infrared absorption in molecular architectures with properties suitable for solar light harvesting and biomedical studies is of fundamental interest. Herein, we report the photophysical, redox, and molecular-orbital characteristics of nine hydroporphyrin dyads and associated benchmark monomers that have been designed and synthesized to attain enhanced light harvesting. Each dyad contains two identical hydroporphyrins (chlorin or bacteriochlorin) connected by a linker (ethynyl or butadiynyl) at the macrocycle ß-pyrrole (3- or 13-) or meso (15-) positions. The strong electronic communication between constituent chromophores is indicated by the doubling of prominent absorption features, split redox waves, and paired linear combinations of frontier molecular orbitals. Relative to the benchmarks, the chlorin dyads in toluene show substantial bathochromic shifts of the long-wavelength absorption band (17-31 nm), modestly reduced singlet excited-state lifetimes (τS = 3.6-6.2 ns vs 8.8-12.3 ns), and increased fluorescence quantum yields (Φf = 0.37-0.57 vs 0.34-0.39). The bacteriochlorin dyads in toluene show significant bathochromic shifts (25-57 nm) and modestly reduced τS (1.6-3.4 ns vs 3.5-5.3 ns) and Φf (0.09-0.19 vs 0.17-0.21) values. The τS and Φf values for the bacteriochlorin dyads are reduced substantially (up to ∼20-fold) in benzonitrile. The quenching is due primarily to the increased S1 → S0 internal conversion that is likely induced by increased contribution of charge-resonance configurations to the S1 excited state in the polar medium. The fundamental insights gained into the physicochemical properties of the strongly coupled hydroporphyrin dyads may aid their utilization in solar-energy conversion and photomedicine.


Subject(s)
Porphyrins/chemistry , Spectrometry, Fluorescence
9.
Nat Prod Commun ; 10(8): 1335-6, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26434107

ABSTRACT

Davanone, a key sesquiterpene component of davana oil, has been synthesized in five convenient steps. Oxygenated sesquiterpenes have been linked to insect deterrent properties. Based on initial screening of davana oil, davanone and its hydroxy precursors have been generated and are being evaluated as arthropod deterrents against disease vectors.


Subject(s)
Artemisia/chemistry , Insecticides/pharmacology , Oils, Volatile/pharmacology , Pesticides/pharmacology , Plant Oils/pharmacology , Aedes/drug effects , Aedes/physiology , Animals , Female , Insecticides/chemical synthesis , Insecticides/chemistry , Molecular Structure , Oils, Volatile/chemical synthesis , Oils, Volatile/chemistry , Pesticides/chemistry , Plant Oils/chemical synthesis , Plant Oils/chemistry
10.
J Org Chem ; 79(17): 7910-25, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25061710

ABSTRACT

We report the synthesis and basic photophysical characterization of strongly conjugated hydroporphyrin (chlorin and bacteriochlorin) dyads. Hydroporphyrins are connected at their respective 13 (ß) or 15 (meso) positions by ethynyl or butadiynyl linkers. Synthesis entails a series of palladium-catalyzed reactions, starting from appropriate bromobacteriochlorin or bromochlorin. Strong conjugation in the dyads results in a significant bathochromic shift of longest-wavelength (Qy-like) band, which in case of the 13-13' ethynyl-linked bacteriochlorin dyad is positioned past 800 nm. The Qy-like band is broad and split for the 13-13' linked chlorin and bacteriochlorin dyads. All dyads exhibit an intense, relatively narrow fluorescence emission band in nonpolar solvents. Bacteriochlorin dyads exhibit a strong dependence of fluorescence intensity on the solvent polarity, which results in more than 10-fold quenching of fluorescence in dimethylformamide. The assembling of hydroporphyrins into strongly conjugated arrays represents an efficient means to tune and expand their optical and photochemical properties, which should greatly broaden the properties attainable for these chromophores.

11.
Org Lett ; 15(19): 4932-5, 2013 Oct 04.
Article in English | MEDLINE | ID: mdl-24059648

ABSTRACT

The oxidation potential of thioethers constrained to be near aromatic rings is lowered, due to an antibonding interaction between the p-type sulfur lone pair with the neighboring phenyl π-system which on removal of an electron becomes a new kind of 3-electron S∴π bonding that reveals itself in the photoelectron spectrum and by an electronic transition involving the orbitals participating in the S∴π bond.


Subject(s)
Cations/chemistry , Sulfides/chemistry , Sulfur/chemistry , Electrons , Molecular Structure , Oxidation-Reduction
12.
Chem Commun (Camb) ; 48(63): 7829-31, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22751352

ABSTRACT

The partial positive charge of amide protons is used to promote macrocyclization and form crown-ether analogs. Their deprotonation generates very selective pH-switchable alkaline earth ion receptors only in the presence of an appropriate substrate.


Subject(s)
Crown Ethers/chemistry , Metals, Alkaline Earth/chemistry , Oximes/chemistry , Amides/chemistry , Cyclization , Hydrogen Bonding , Hydrogen-Ion Concentration , Ions/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...