Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Neurosurgery ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842320

ABSTRACT

BACKGROUND AND OBJECTIVES: Ventriculo-peritoneal shunt procedures can improve idiopathic normal pressure hydrocephalus (iNPH) symptoms. However, there are no automated methods that quantify the presurgery and postsurgery changes in the ventricular volume for computed tomography scans. Hence, the main goal of this research was to quantify longitudinal changes in the ventricular volume and its correlation with clinical improvement in iNPH symptoms. Furthermore, our objective was to develop an end-to-end graphical interface where surgeons can directly drag-drop a brain scan for quantified analysis. METHODS: A total of 15 patients with 47 longitudinal computed tomography scans were taken before and after shunt surgery. Postoperative scans were collected between 1 and 45 months. We use a UNet-based model to develop a fully automated metric. Center slices of the scan that are most representative (80%) of the ventricular volume of the brain are used. Clinical symptoms of gait, balance, cognition, and bladder continence are studied with respect to the proposed metric. RESULTS: Fifteen patients with iNPH demonstrate a decrease in ventricular volume (as shown by our metric) postsurgery and a concurrent clinical improvement in their iNPH symptomatology. The decrease in postoperative central ventricular volume varied between 6 cc and 33 cc (mean: 20, SD: 9) among patients who experienced improvements in gait, bladder continence, and cognition. Two patients who showed improvement in only one or two of these symptoms had <4 cc of cerebrospinal fluid drained. Our artificial intelligence-based metric and the graphical user interface facilitate this quantified analysis. CONCLUSION: Proposed metric quantifies changes in ventricular volume before and after shunt surgery for patients with iNPH, serving as an automated and effective radiographic marker for a functioning shunt in a patient with iNPH.

2.
IEEE Trans Med Imaging ; 42(12): 3725-3737, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37590108

ABSTRACT

Tractography can generate millions of complex curvilinear fibers (streamlines) in 3D that exhibit the geometry of white matter pathways in the brain. Common approaches to analyzing white matter connectivity are based on adjacency matrices that quantify connection strength but do not account for any topological information. A critical element in neurological and developmental disorders is the topological deterioration and irregularities in streamlines. In this paper, we propose a novel Reeb graph-based method "ReeBundle" that efficiently encodes the topology and geometry of white matter fibers. Given the trajectories of neuronal fiber pathways (neuroanatomical bundle), we re-bundle the streamlines by modeling their spatial evolution to capture geometrically significant events (akin to a fingerprint). ReeBundle parameters control the granularity of the model and handle the presence of improbable streamlines commonly produced by tractography. Further, we propose a new Reeb graph-based distance metric that quantifies topological differences for automated quality control and bundle comparison. We show the practical usage of our method using two datasets: (1) For International Society for Magnetic Resonance in Medicine (ISMRM) dataset, ReeBundle handles the morphology of the white matter tract configurations due to branching and local ambiguities in complicated bundle tracts like anterior and posterior commissures; (2) For the longitudinal repeated measures in the Cognitive Resilience and Sleep History (CRASH) dataset, repeated scans of a given subject acquired weeks apart lead to provably similar Reeb graphs that differ significantly from other subjects, thus highlighting ReeBundle's potential for clinical fingerprinting of brain regions.


Subject(s)
White Matter , Humans , White Matter/diagnostic imaging , Image Processing, Computer-Assisted/methods , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/anatomy & histology , Corpus Callosum , Neural Pathways
SELECTION OF CITATIONS
SEARCH DETAIL
...