Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Faraday Discuss ; 238(0): 575-588, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-35785787

ABSTRACT

Hydroperoxyalkyl radicals (˙QOOH) are transient intermediates in the atmospheric oxidation of volatile organic compounds and combustion of hydrocarbon fuels in low temperature (<1000 K) environments. The carbon-centered ˙QOOH radicals are a critical juncture in the oxidation mechanism, but have generally eluded direct experimental observation of their structure, stability, and dissociation dynamics. Recently, this laboratory demonstrated that a prototypical ˙QOOH radical [˙CH2(CH3)2COOH] can be synthesized by an alternative route, stabilized in a pulsed supersonic expansion, and characterized by its infrared (IR) spectroscopic signature and unimolecular dissociation rate to OH radical and cyclic ether products. The present study focuses on a partially deuterated ˙QOOD analog ˙CH2(CH3)2COOD, generated in the laboratory by H-atom abstraction from partially deuterated tert-butyl hydroperoxide, (CH3)3COOD. IR spectral features associated with jet-cooled and isolated ˙QOOD radicals are observed in the vicinity of the transition state (TS) barrier leading to OD radical and cyclic ether products. The overtone OD stretch (2νOD) of ˙QOOD is identified by IR action spectroscopy with UV laser-induced fluorescence detection of OD products. Direct time-domain measurement of the unimolecular dissociation rate for ˙QOOD (2νOD) extends prior rate measurements for ˙QOOH. Partial deuteration results in a small increase in the TS barrier predicted by high level electronic structure calculations due to changes in zero-point energies; the imaginary frequency is unchanged. Comparison of the unimolecular decay rates obtained experimentally with those predicted theoretically for both ˙QOOH and ˙QOOD confirm that unimolecular decay is enhanced by heavy-atom tunneling involving simultaneous O-O bond elongation and C-C-O angle contraction along the reaction pathway.

2.
J Chem Phys ; 156(1): 014301, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34998315

ABSTRACT

Infrared (IR) action spectroscopy is utilized to characterize a prototypical carbon-centered hydroperoxyalkyl radical (•QOOH) transiently formed in the oxidation of volatile organic compounds. The •QOOH radical formed in isobutane oxidation, 2-hydroperoxy-2-methylprop-1-yl, •CH2(CH3)2COOH, is generated in the laboratory by H-atom abstraction from tert-butyl hydroperoxide (TBHP). IR spectral features of jet-cooled and stabilized •QOOH radicals are observed from 2950 to 7050 cm-1 at energies that lie below and above the transition state barrier leading to OH radical and cyclic ether products. The observed •QOOH features include overtone OH and CH stretch transitions, combination bands involving OH or CH stretch and a lower frequency mode, and fundamental OH and CH stretch transitions. Most features arise from a single vibrational transition with band contours well simulated at a rotational temperature of 10 K. In each case, the OH products resulting from unimolecular decay of vibrationally activated •QOOH are detected by UV laser-induced fluorescence. Assignments of observed •QOOH IR transitions are guided by anharmonic frequencies computed using second order vibrational perturbation theory, a 2 + 1 model that focuses on the coupling of the OH stretch with two low-frequency torsions, as well as recently predicted statistical •QOOH unimolecular decay rates that include heavy-atom tunneling. Most of the observed vibrational transitions of •QOOH are readily distinguished from those of the TBHP precursor. The distinctive IR transitions of •QOOH, including the strong fundamental OH stretch, provide a general means for detection of •QOOH under controlled laboratory and real-world conditions.

3.
Science ; 373(6555): 679-682, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34353951

ABSTRACT

A prototypical hydroperoxyalkyl radical (•QOOH) intermediate, transiently formed in the oxidation of volatile organic compounds, was directly observed through its infrared fingerprint and energy-dependent unimolecular decay to hydroxyl radical and cyclic ether products. Direct time-domain measurements of •QOOH unimolecular dissociation rates over a wide range of energies were found to be in accord with those predicted theoretically using state-of-the-art electronic structure characterizations of the transition state barrier region. Unimolecular decay was enhanced by substantial heavy-atom tunneling involving O-O elongation and C-C-O angle contraction along the reaction pathway. Master equation modeling yielded a fully a priori prediction of the pressure-dependent thermal unimolecular dissociation rates for the •QOOH intermediate-again increased by heavy-atom tunneling-which are required for global models of atmospheric and combustion chemistry.

4.
J Chem Phys ; 154(16): 164306, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33940856

ABSTRACT

The infrared (IR) spectrum of tert-butyl hydroperoxide (TBHP) in the region of the first OH-stretching overtone has been observed under jet-cooled and thermal (300 K, 3 Torr) conditions at ∼7017 cm-1. The jet-cooled spectrum is recorded by IR multiphoton excitation with UV laser-induced fluorescence detection of OH radical products, while direct IR absorption is utilized under thermal conditions. Prior spectroscopic studies of TBHP and other hydroperoxides have shown that the OH-stretch and XOOH (X = H or C) torsion vibrations are strongly coupled, resulting in a double well potential associated with the torsional motion about the OO bond that is different for each of the OH-stretching vibrational states. A low barrier between the wells on the torsional potential results in tunneling split energy levels, which leads to four distinct transitions associated with excitation of the coupled OH-stretch-torsion states. In order to interpret the experimental results, two theoretical models are used that include the OH-stretch-torsion coupling in TBHP. Both methods are utilized to compute the vibrational transitions associated with the coupled OH-stretch-torsion states of TBHP, revealing the underlying transitions that compose the experimentally observed features. A comparison between theory and experiment illustrates the necessity for treatments that include OH-stretch and COOH torsion in order to unravel the spectral features observed in the first OH-stretching overtone region of TBHP.

5.
Phys Chem Chem Phys ; 22(46): 26796-26805, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33211784

ABSTRACT

Isoprene is the most abundant non-methane hydrocarbon emitted into the Earth's atmosphere. Ozonolysis is an important atmospheric sink for isoprene, which generates reactive carbonyl oxide species (R1R2C[double bond, length as m-dash]O+O-) known as Criegee intermediates. This study focuses on characterizing the catalyzed isomerization and adduct formation pathways for the reaction between formic acid and methyl vinyl ketone oxide (MVK-oxide), a four-carbon unsaturated Criegee intermediate generated from isoprene ozonolysis. syn-MVK-oxide undergoes intramolecular 1,4 H-atom transfer to form a substituted vinyl hydroperoxide intermediate, 2-hydroperoxybuta-1,3-diene (HPBD), which subsequently decomposes to hydroxyl and vinoxylic radical products. Here, we report direct observation of HPBD generated by formic acid catalyzed isomerization of MVK-oxide under thermal conditions (298 K, 10 torr) using multiplexed photoionization mass spectrometry. The acid catalyzed isomerization of MVK-oxide proceeds by a double hydrogen-bonded interaction followed by a concerted H-atom transfer via submerged barriers to produce HPBD and regenerate formic acid. The analogous isomerization pathway catalyzed with deuterated formic acid (D2-formic acid) enables migration of a D atom to yield partially deuterated HPBD (DPBD), which is identified by its distinct mass (m/z 87) and photoionization threshold. In addition, bimolecular reaction of MVK-oxide with D2-formic acid forms a functionalized hydroperoxide adduct, which is the dominant product channel, and is compared to a previous bimolecular reaction study with normal formic acid. Complementary high-level theoretical calculations are performed to further investigate the reaction pathways and kinetics.

6.
J Am Chem Soc ; 141(38): 15058-15069, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31446755

ABSTRACT

Ozonolysis of isoprene, one of the most abundant volatile organic compounds in the earth's atmosphere, generates the four-carbon unsaturated methacrolein oxide (MACR-oxide) Criegee intermediate. The first laboratory synthesis and direct detection of MACR-oxide is achieved through reaction of photolytically generated, resonance-stabilized iodoalkene radicals with oxygen. MACR-oxide is characterized on its first π* ← π electronic transition using a ground-state depletion method. MACR-oxide exhibits a broad UV-visible spectrum peaked at 380 nm with weak oscillatory structure at long wavelengths ascribed to vibrational resonances. Complementary theory predicts two strong π* ← π transitions arising from extended conjugation across MACR-oxide with overlapping contributions from its four conformers. Electronic promotion to the 11ππ* state agrees well with experiment, and results in nonadiabatic coupling and prompt release of O 1D products observed as anisotropic velocity-map images. This UV-visible detection scheme will enable study of its unimolecular and bimolecular reactions under thermal conditions of relevance to the atmosphere.

SELECTION OF CITATIONS
SEARCH DETAIL
...