Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 10(3)2018 Jul 08.
Article in English | MEDLINE | ID: mdl-29986543

ABSTRACT

Drug nanoparticles embedded in a dispersant matrix as a secondary phase, i.e., drug-laden nanocomposites, offer a versatile delivery platform for enhancing the dissolution rate and bioavailability of poorly water-soluble drugs. Drug nanoparticles are prepared by top-down, bottom-up, or combinative approaches in the form of nanosuspensions, which are subsequently dried to prepare drug-laden nanocomposites. In this comprehensive review paper, the term “nanocomposites” is used in a broad context to cover drug nanoparticle-laden intermediate products in the form of powders, cakes, and extrudates, which can be incorporated into final oral solid dosages via standard pharmaceutical unit operations, as well as drug nanoparticle-laden strip films. The objective of this paper is to review studies from 2012⁻2017 in the field of drug-laden nanocomposites. After a brief overview of the various approaches used for preparing drug nanoparticles, the review covers drying processes and dispersant formulations used for the production of drug-laden nanocomposites, as well as various characterization methods including quiescent and agitated redispersion tests. Traditional dispersants such as soluble polymers, surfactants, other water-soluble dispersants, and water-insoluble dispersants, as well as novel dispersants such as wet-milled superdisintegrants, are covered. They exhibit various functionalities such as drug nanoparticle stabilization, mitigation of aggregation, formation of nanocomposite matrix⁻film, wettability enhancement, and matrix erosion/disintegration. Major challenges such as nanoparticle aggregation and poor redispersibility that cause inferior dissolution performance of the drug-laden nanocomposites are highlighted. Literature data are analyzed in terms of usage frequency of various drying processes and dispersant classes. We provide some engineering considerations in comparing drying processes, which could account for some of the diverging trends in academia vs. industrial practice. Overall, this review provides rationale and guidance for drying process selection and robust nanocomposite formulation development, with insights into the roles of various classes of dispersants.

2.
Eur J Pharm Biopharm ; 94: 372-85, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26079832

ABSTRACT

Drug nanoparticles in suspensions can form aggregates leading to physical instability, which is traditionally mitigated using soluble polymers and surfactants. The aim of this paper was to explore common superdisintegrants, i.e., sodium starch glycolate (SSG), croscarmellose sodium (CCS), and crospovidone (CP), as novel class of dispersants for enhanced stabilization of fenofibrate (FNB), a model BCS Class II drug, suspensions. FNB was wet-milled with superdisintegrants along with hydroxypropyl methylcellulose (HPMC), a soluble adsorbing polymer, in a stirred media mill. For comparison, FNB was also milled in the presence of HPMC and/or SDS (sodium dodecyl sulfate) without superdisintegrants. Laser diffraction, scanning electron microscopy, viscometry, differential scanning calorimetry, and powder X-ray diffraction were used to characterize the suspensions. The results show that 2% HPMC along with 1% SSG or 1% CCS mitigated the aggregation of FNB nanoparticles significantly similar to the use of either 5% HPMC or 1% HPMC-0.075% SDS, whereas CP was not effective due to its low swelling capacity. CCS/SSG enhanced steric-kinetic stabilization of the FNB suspensions owing to their high swelling capacity, viscosity enhancement, and physical barrier action. Overall, this study provides a mechanistic basis for a novel method of formulating surfactant-free drug nanosuspensions with co-milled superdisintegrants.


Subject(s)
Excipients/chemistry , Fenofibrate/chemistry , Hypolipidemic Agents/chemistry , Hypromellose Derivatives/chemistry , Nanoparticles/chemistry , Technology, Pharmaceutical/methods , Adsorption , Carboxymethylcellulose Sodium/chemistry , Drug Stability , Kinetics , Povidone/chemistry , Starch/analogs & derivatives , Starch/chemistry , Suspensions
3.
Drug Dev Ind Pharm ; 40(11): 1509-22, 2014 Nov.
Article in English | MEDLINE | ID: mdl-23981202

ABSTRACT

Nanocomposite microparticles (NCMPs) incorporating drug nanoparticles and wet-milled swellable dispersant particles were investigated as a surfactant-free drug delivery vehicle with the goal of enhancing the nanoparticle recovery and dissolution rate of poorly water-soluble drugs. Superdisintegrants were used as inexpensive, model, swellable dispersant particles by incorporating them into NCMP structure with or without wet-stirred media milling along with the drug. Suspensions of griseofulvin (GF, model drug) along with various dispersants produced by wet-milling were coated onto Pharmatose® to prepare NCMPs in a fluidized bed process. Hydroxypropyl cellulose (HPC, polymer) alone and with sodium dodecyl sulfate (SDS, surfactant) was used as base-line stabilizer/dispersant during milling. Croscarmellose sodium (CCS, superdisintegrant) and Mannitol were used as additional dispersants to prepare surfactant-free NCMPs. Nanoparticle recovery during redispersion and dissolution of the various GF-laden NCMPs were examined. Suspensions prepared by co-milling GF/HPC/CCS or milling GF/HPC/SDS were stable after 30 h of storage. After drying, due to its extensive swelling capacity, incorporation of wet-milled CCS in the NCMPs caused effective breakage of the NCMP structure and bursting of nanoparticle clusters, ultimately leading to fast recovery of the GF nanoparticles. Optimized wet co-milling and incorporation of CCS in NCMP structure led to superior dispersant performance over incorporation of unmilled CCS or physically mixed unmilled CCS with NCMPs. The enhanced redispersion correlated well with the fast GF dissolution from the NCMPs containing either CCS particles or SDS. Overall, swellable dispersant (CCS) particles, preferably in multimodal size distribution, enable a surfactant-free formulation for fast recovery/dissolution of the GF nanoparticles.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Cellulose/analogs & derivatives , Griseofulvin/administration & dosage , Griseofulvin/chemistry , Nanocomposites/chemistry , Sodium Dodecyl Sulfate/chemistry , Cellulose/chemistry , Mannitol/chemistry , Particle Size , Solubility , Surface-Active Agents/chemistry , Technology, Pharmaceutical
4.
Int J Pharm ; 461(1-2): 367-79, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24333905

ABSTRACT

Enhanced recovery/dissolution of two wet media-milled, poorly water-soluble drugs, Griseofulvin (GF) and Azodicarbonamide (AZD), incorporated into nanocomposite microparticles (NCMPs) via fluidized bed drying (FBD) and spray-drying (SD) was investigated. The effects of drying method, drug loading, drug aqueous solubility/wettability as well as synergistic stabilization of the milled suspensions on nanoparticle recovery/dissolution were examined. Drug nanoparticle recovery from FBD and SD produced NCMPs having high drug loadings was evaluated upon gentle redispersion via optical microscopy and laser diffraction. During wet-milling, hydroxypropyl cellulose (HPC) alone stabilized more wettable drug (AZD) nanoparticles with slight aggregation, but could not prevent aggregation of the GF nanoparticles. In contrast, well-dispersed, stable nanosuspensions of both drugs were produced when sodium dodecyl sulfate (SDS) and HPC were combined. The FBD and SD NCMPs without SDS exhibited incomplete nanoparticle recovery, causing slower dissolution for GF, but not for AZD, likely due to higher aqueous solubility/wettability of AZD. For high active loaded NCMPs (FBD ∼50 wt%, SD ∼80 wt%) of either drug, HPC-SDS together owing to their synergistic stabilization led to fast redispersibility/dissolution, corroborated via optical microscopy and particle sizing. These positive attributes can help development of smaller, high drug-loaded dosage forms having enhanced bioavailability and better patient compliance.


Subject(s)
Azo Compounds/administration & dosage , Excipients/chemistry , Griseofulvin/administration & dosage , Nanocomposites , Azo Compounds/chemistry , Cellulose/analogs & derivatives , Cellulose/chemistry , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Griseofulvin/chemistry , Nanoparticles , Particle Size , Sodium Dodecyl Sulfate/chemistry , Solubility , Suspensions , Water/chemistry , Wettability
5.
Int J Pharm ; 455(1-2): 93-103, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23911341

ABSTRACT

Fast drying of nano-drug particle laden strip-films formed using water-soluble biocompatible polymers via forced convection is investigated in order to form films having uniform drug distribution and fast dissolution. Films were produced by casting and drying a mixture of poorly water soluble griseofulvin (GF) nanosuspensions produced via media milling with aqueous hydroxypropyl methylcellulose (HPMC E15LV) solutions containing glycerin as a plasticizer. The effects of convective drying parameters, temperature and air velocity, and film-precursor viscosity on film properties were investigated. Two major drying regimes, a constant rate period as a function of the drying conditions, followed by a single slower falling rate period, were observed. Films dried in an hour or less without any irreversible aggregation of GF nanoparticles with low residual water content. Near-infrared chemical imaging (NIR-CI) and the content uniformity analysis indicated a better drug particle distribution when higher viscosity film-precursors were used. Powder X-ray diffraction showed that the GF in the films retained crystallinity and the polymorphic form. USP IV dissolution tests showed immediate release (~20 min) of GF. Overall, the films fabricated from polymer-based suspensions at higher viscosity dried at different conditions exhibited similar mechanical properties, improved drug content uniformity, and achieved fast drug dissolution.


Subject(s)
Desiccation/methods , Drug Compounding/methods , Griseofulvin/chemistry , Nanoparticles/chemistry , Biocompatible Materials/chemistry , Convection , Drug Delivery Systems , Glycerol/chemistry , Hypromellose Derivatives , Methylcellulose/analogs & derivatives , Methylcellulose/chemistry , Microscopy, Electron, Scanning , Nanoparticles/ultrastructure , Plasticizers/chemistry , Powder Diffraction , Sodium Dodecyl Sulfate/chemistry , Solubility , Temperature , Water/chemistry , X-Ray Diffraction
6.
AAPS PharmSciTech ; 13(4): 1473-82, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23090112

ABSTRACT

Recent interest in the development of drug particle-laden strip-films suggests the need for establishing standard regulatory tests for their dissolution. In this work, we consider the dissolution testing of griseofulvin (GF) particles, a poorly water-soluble compound, incorporated into a strip-film dosage form. The basket apparatus (USP I) and the flow-through cell dissolution apparatus (USP IV) were employed using 0.54% sodium dodecyl sulfate as the dissolution medium as per USP standard. Different rotational speeds and dissolution volumes were tested for the basket method while different cell patterns/strip-film position and dissolution media flow rate were tested using the flow-through cell dissolution method. The USP I was not able to discriminate dissolution of GF particles with respect to particle size. On the other hand, in the USP IV, GF nanoparticles incorporated in strip-films exhibited enhancement in dissolution rates and dissolution extent compared with GF microparticles incorporated in strip-films. Within the range of patterns and flow rates used, the optimal discrimination behavior was obtained when the strip-film was layered between glass beads and a flow rate of 16 ml/min was used. These results demonstrate the superior discriminatory power of the USP IV and suggest that it could be employed as a testing device in the development of strip-films containing drug nanoparticles.


Subject(s)
Chemistry, Pharmaceutical/methods , Griseofulvin/chemistry , Nanoparticles/chemistry , Dosage Forms , Membranes, Artificial , Particle Size , Sodium Dodecyl Sulfate/chemistry , Solubility , Water
7.
Int J Pharm ; 423(2): 496-508, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22178619

ABSTRACT

The design and feasibility of a simple process of incorporating stable nanoparticles into edible polymer films is demonstrated with the goal of enhancing the dissolution rate of poorly water soluble drugs. Nanosuspensions produced from wet stirred media milling (WSMM) were transformed into polymer films containing drug nanoparticles by mixing with a low molecular weight hydroxylpropyl methyl cellulose (HPMC E15LV) solution containing glycerin followed by film casting and drying. Three different BCS Class II drugs, naproxen (NPX), fenofibrate (FNB) and griseofulvin (GF) were studied. The influence of the drug molecule on the film properties was also investigated. It was shown that film processing methodology employed has no effect on the drug crystallinity according to X-ray diffraction (XRD) and Raman spectroscopy. Differences in aggregation behavior of APIs in films were observed through SEM and NIR chemical imaging analysis. NPX exhibited the strongest aggregation compared to the other drugs. The aggregation had a direct effect on drug content uniformity in the film. Mechanical properties of the film were also affected depending on the drug-polymer interaction. Due to strong hydrogen bonding with the polymer, NPX exhibited an increase in Young's Modulus (YM) of approximately 200%, among other mechanical properties, compared to GF films. A synergistic effect between surfactant/polymer and drug/polymer interactions in the FNB film resulted in an increase of more than 600% in YM compared to the GF film. The enhancement in drug dissolution rate of films due to the large surface area and smaller drug particle size was also demonstrated.


Subject(s)
Drug Carriers , Fenofibrate/chemistry , Griseofulvin/chemistry , Methylcellulose/analogs & derivatives , Nanoparticles , Naproxen/chemistry , Chemistry, Pharmaceutical , Crystallization , Crystallography, X-Ray , Drug Compounding , Elastic Modulus , Feasibility Studies , Glycerol/chemistry , Hydrogen Bonding , Hypromellose Derivatives , Kinetics , Methylcellulose/chemistry , Microscopy, Electron, Scanning , Nanotechnology , Particle Size , Plasticizers/chemistry , Solubility , Spectroscopy, Near-Infrared , Spectrum Analysis, Raman , Surface Properties , Surface-Active Agents/chemistry , Technology, Pharmaceutical/methods
8.
Drug Dev Ind Pharm ; 37(8): 963-76, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21323486

ABSTRACT

Micronization and nanoparticle production of poorly water-soluble drugs was investigated using single wet milling equipment operating in the attritor and stirred media modes. The drug particles in the median size range of 0.2?2??m were prepared by changing the milling mode and operating conditions of a Micros mill with a purpose of elucidating the dynamics of the wet milling process. It was determined that particle breakage due to mechanical stresses and aggregation due to insufficient stabilization are two competing mechanisms which together control the wet milling dynamics of the poorly water-soluble drugs. The study in the attritor mode using four different classes of stabilizers with six drugs indicated that steric stabilization worked better than electrostatic stabilization for the drugs studied. In addition, the existence of different minimum polymer concentrations for the stabilization of microsuspensions and nanosuspensions was indicated. The major role of a non-ionic polymer during the production of fine particles is its stabilization action through steric effects, and no experimental evidence was found to support the so-called Rehbinder effect. Periodic addition of the polymer as opposed to the addition of the polymer at the start of milling process was introduced as a novel processing method. This novel method of polymer addition provided effective stabilization and breakage of drug particles leading to a narrower and finer particle size distribution. Alternatively, it may allow shorter processing time and lower overall power consumption of the milling process for a desired particle size.


Subject(s)
Drug Delivery Systems , Nanoparticles/chemistry , Particle Size , Water/chemistry , Hydrogen-Ion Concentration , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...