Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Top Curr Chem (Cham) ; 382(2): 12, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589598

ABSTRACT

Organoselenium compounds have been the subject of extensive research since the discovery of the biologically active compound ebselen. Ebselen has recently been found to show activity against the main protease of the virus responsible for COVID-19. Other organoselenium compounds are also well-known for their diverse biological activities, with such compounds exhibiting interesting physical properties relevant to the fields of electronics, materials, and polymer chemistry. In addition, the incorporation of selenium into various organic molecules has garnered significant attention due to the potential of selenium to enhance the biological activity of these molecules, particularly in conjunction with bioactive heterocycles. Iodine and iodine-based reagents play a prominent role in the synthesis of organoselenium compounds, being valued for their cost-effectiveness, non-toxicity, and ease of handling. These reagents efficiently selenylate a broad range of organic substrates, encompassing alkenes, alkynes, and cyclic, aromatic, and heterocyclic molecules. They serve as catalysts, additives, inducers, and oxidizing agents, facilitating the introduction of different functional groups at alternate positions in the molecules, thereby allowing for regioselective and stereoselective approaches. Specific iodine reagents and their combinations can be tailored to follow the desired reaction pathways. Here, we present a comprehensive review of the progress in the selenylation of organic molecules using iodine reagents over the past decade, with a focus on reaction patterns, solvent effects, heating, microwave, and ultrasonic conditions. Detailed discussions on mechanistic aspects, such as electrophilic, nucleophilic, radical, electrochemical, and ring expansion reactions via selenylation, multiselenylation, and difunctionalization, are included. The review also highlights the formation of various cyclic, heterocyclic, and heteroarenes resulting from the in situ generation of selenium intermediates, encompassing cyclic ketones, cyclic ethers, cyclic lactones, selenophenes, chromones, pyrazolines, pyrrolidines, piperidines, indolines, oxazolines, isooxazolines, lactones, dihydrofurans, and isoxazolidines. To enhance the reader's interest, the review is structured into different sections covering the selenylation of aliphatic sp2/sp carbon and cyclic sp2 carbon, and then is further subdivided into various heterocyclic molecules.


Subject(s)
Iodine , Isoindoles , Organoselenium Compounds , Selenium , Iodine/chemistry , Indicators and Reagents , Organoselenium Compounds/chemistry , Lactones/chemistry , Carbon
2.
Bioorg Chem ; 147: 107337, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626491

ABSTRACT

A convenient methodology for C-4 indole-ß-lactam hybrids with chloro, sulphur and seleno substitutions through dual site reactivity of indole-3-Schiff bases towards ketenes has been developed. The reaction proceeded in a stereospecific manner with the exclusive formation of trans-ß-lactams assigned with respect to C3-H and C4-H. The synthesized novel ß-lactams have been characterized with the help of elemental analysis (CHNS) and spectroscopic techniques viz.1H NMR, 13C NMR, DEPT 135, HSQC and IR. The trans configuration was further estabilished based on X-ray crystallographic data. Examination of antibacterial properties unveiled that only derivatives 5a and 5b, featuring chloro substitution, exhibited potent activities, underscoring the emergence of the recently coined term "magic chloro effect". Molecular docking analysis provided additional support for the observed in vitro antibacterial activities of compounds 5a-b.


Subject(s)
Anti-Bacterial Agents , Indoles , Microbial Sensitivity Tests , Molecular Docking Simulation , Schiff Bases , beta-Lactams , Schiff Bases/chemistry , Schiff Bases/pharmacology , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , beta-Lactams/chemistry , beta-Lactams/pharmacology , beta-Lactams/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Ketones/chemistry , Ketones/pharmacology , Ketones/chemical synthesis , Ethylenes/chemistry , Ethylenes/pharmacology , Stereoisomerism , Selenium/chemistry , Selenium/pharmacology , Sulfur/chemistry , Dose-Response Relationship, Drug
3.
Org Biomol Chem ; 21(44): 8868-8874, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37888837

ABSTRACT

Herein, we showcase the potential of isothiocyanates generated in situ and aryl sulfonyl chlorides as electrophiles in water for N-functionalization of bicyclic amidines (DBN and DBU). This strategy provides complementary access to a range of thiouredosulfides, sulfonamides, aroylthioureas and amides derivativatized with distal γ- and ω-lactams. A novel sulfonyl chloride mediated formation of ß-uredo sulfides has been achieved from ß-isothiocyanato sulfides, removing the requirement for the harsh synthesis of unstable isocyanates. Mechanistic studies suggest a radical mechanism for the difunctionalization of alkenes, the efficacy of H2O in the ring opening of bicyclic amidines, and an oxygen source along with sulfonyl chloride as desulfurization agents for thiourea to afford urea derivatives.

4.
Sci Rep ; 13(1): 9301, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291249

ABSTRACT

Colorectal cancer (CRC) is a multistep disorder resulting from genetic and epigenetic genome changes. It is the third most common malignancy in developed nations accounting for roughly 600,000 deaths annually. Persistent gut inflammation, as observed in inflammatory bowel disease (IBD), is a key risk factor for CRC development. From an epigenetic viewpoint, the pharmacological inhibition of HDACs using HDAC inhibitors such as SAHA has emerged as a suitable anticancer strategy in the recent past. However, the clinical success of these strategies is limited and has risk factors associated with their uses. Thus, considering the critical involvement of epigenetic regulation of key molecular mechanisms in carcinogenesis as well as HDAC inhibitory and anti-tumorigenic properties of Selenium (Se), we aimed to explore the potentially safer and enhanced chemotherapeutic potential of a Se derivative of SAHA namely SelSA-1, in an experimental model of colitis-associated experimental cancer (CAC) model and mechanism involved therein. The in vitro study indicated improved efficiency, specificity, and better safety margin in terms of lower IC50 value of SelSA-1 than SAHA in both NIH3T3 (9.44 and 10.87 µM) and HCT 115 (5.70 and 7.49 µM) cell lines as well on primary colonocytes (5.61 and 6.30 µM) respectively. In an in vivo experimental model, SelSA-1 efficiently demonstrated amelioration of the multiple plaque lesions (MPLs), tumor burden/incidence, and modulation of various histological and morphological parameters. Further, redox-mediated alterations in apoptotic mediators suggested induction of cancer cell apoptosis by SelSA-1. These findings indicate the enhanced chemotherapeutic and pro-resolution effects of SelSA-1 in part mediated through redox modulation of multiple epigenetic and apoptotic pathways.


Subject(s)
Epigenesis, Genetic , Histone Deacetylase Inhibitors , Animals , Mice , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , NIH 3T3 Cells , Hydroxamic Acids/pharmacology , Apoptosis , Oxidation-Reduction , Cell Line, Tumor
5.
ACS Appl Bio Mater ; 6(5): 1849-1862, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37076450

ABSTRACT

trans-1-(4'-Methoxyphenyl)-3-methoxy-4-phenyl 3-methoxyazetidin-2-one (or 3-methoxyazetidin-2-one) is one of the important ß-lactam derivatives with an ample range of bacterial activities yet few restrictions. To enhance the competency of the chosen 3-methoxyazetidin-2-one, microfibrils composed of copper oxide (CuO) and filter scraps of cigarette butts (CB) were chosen in the current work for developing a potential release formulation. The preparation of CuO-CB microfibrils required a simple reflux technique and a subsequent calcination treatment. The loading of 3-methoxyazetidin-2-one was processed via controlled magnetic stirring followed by centrifugation with microfibrils of CuO-CB. To confirm the loading efficiency, the 3-methoxyazetidin-2-one@CuO-CB complex was analyzed by scanning electron microscopy, transmission electron microscopy, and infrared spectroscopy. Compared to the CuO nanoparticles, the release profile of CuO-CB microfibrils indicates only 32% of the drug release in the first 1 h at pH 7.4. As a model organism, E. coli has been utilized for in vitro drug release dynamic studies. Based on the observed drug release data, it was found that the prepared formulation evades premature drug release and triggers the on-demand release of drug inside bacterial cells. The controlled drug release by 3-methoxyazetidin-2-one@CuO-CB microfibrils over a period of 12 h further ascertained the excellent bactericide delivery mechanism to combat deadly bacterial resistance. Indeed, this study provides a strategy to combat antimicrobial resistance and eradicate bacterial disease via nanotherapeutics.


Subject(s)
Bacterial Infections , Metal Nanoparticles , Humans , Metal Nanoparticles/chemistry , Escherichia coli , Delayed-Action Preparations/pharmacology , Drug Compounding , Microfibrils , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
6.
Mol Cell Biochem ; 478(3): 621-636, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36001205

ABSTRACT

Ulcerative colitis (UC) is an idiopathic, chronic and relapsing colonic inflammatory disease. Despite the involvement of diverse intricate mechanisms, COX mediated inflammatory pathway is crucial in the pathophysiology of colitis. Thus, COX inhibition is imperative for managing colitis-associated inflammation. However, the use of COX inhibitory classical non-steroidal anti-inflammatory drugs (NSAIDs) for inflammation resolution has been linked to sudden increased flare-ups. Therefore, considering the anti-inflammatory and pro-resolution effects of antioxidant and essential trace element Selenium (Se), a Seleno-derivative of Celecoxib called Selenocoxib-3 was characterized and evaluated for its favourable pharmacokinetics, safety margins and anti-inflammatory therapeutic potential in DSS-induced experimental colitis. The serum pharmacokinetic profiling [elimination rate constant (K) and clearance (Cl) and toxicity profiling suggested enhanced efficacy, therapeutic potential and lesser toxicity of Selenocoxib-3 as compared to its parent NSAID Celecoxib. In vivo studies demonstrated that Selenocoxib-3 efficiently resolves the gross morphological signs of DSS-induced colitis such as diarrhoea, bloody stools, weight loss and colon shortening. Further, intestinal damage evaluated by H & E staining and MPO activity suggested of histopathological disruptions, such as neutrophil infiltration, mucodepletion and cryptitis, by Selenocoxib-3. The expression profiles of COX-1/2 demonstrated mitigation of pro-inflammatory mediators thereby promoting anti-inflammatory efficacy of Selenocoxib-3 when compared with Celecoxib. The current study suggests translational applicability of Se-containing novel class of COX inhibitors for efficiently managing inflammatory disorders such as UC.


Subject(s)
Colitis, Ulcerative , Colitis , Animals , Celecoxib/adverse effects , Anti-Inflammatory Agents/pharmacology , Colitis/metabolism , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Colon , Inflammation/metabolism , Cyclooxygenase 2/metabolism , Dextran Sulfate/pharmacology , Disease Models, Animal
7.
Biol Trace Elem Res ; 200(2): 635-646, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33677818

ABSTRACT

Colorectal cancer (CRC) is a major cause of morbidity and mortality worldwide. Despite the critical involvement of epigenetic modifications in CRC, the studies on the chemotherapeutic efficacy of various epigenetic regulators remain limited. Considering the key roles of histone deacetylases (HDACs) in the regulation of diverse cellular processes, several HDAC inhibitors are implied as effective therapeutic strategies. In this context, suberoylanilide hydroxamic acid (SAHA), a 2nd-generation HDAC inhibitor, showed limited efficacy in solid tumors. Also, side effects associated with SAHA limit its clinical application. Based on the redox-modulatory and HDAC inhbitiory activities of essential trace element selenium (Se), the anti-carcinogenic potential of Se substituted SAHA, namely, SelSA-1 (25 mg kg-1), was screened for it enhanced anti-tumorigenic role and wider safety profiles in DMH-induced CRC in Balb/c mice. A multipronged approach such as in silico, biochemical, and pharmacokinetics (PK) has been used to screen, characterize, and evaluate these novel compounds in comparison to existing HDAC inhibitor SAHA. This is the first in vivo study indicating the chemotherapeutic potential of Se-based novel epigenetic regulators such as SelSA-1 in any in vivo experimental model of carcinogenesis. Pharmcological and toxicity data indicated better safety margins, bioavailability, tolerance, and elimination rate of SelSA-1 compared to classical HDAC inhibitor SAHA. Further, histological and morphological evidence demonstrated enhanced chemotherapeutic potential of SelSA-1 even at lower pharmacological doses than SAHA. This is the first in vivo study suggesting Se-based novel epigenetic regulators as potential chemotherapeutic alternatives with wider safety margins and enhanced anticancer activities.


Subject(s)
Colorectal Neoplasms , Selenium , Animals , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Epigenesis, Genetic , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids , Mice , Selenium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...