Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 24(1): 461, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38062356

ABSTRACT

BACKGROUND: Basecalling long DNA sequences is a crucial step in nanopore-based DNA sequencing protocols. In recent years, the CTC-RNN model has become the leading basecalling model, supplanting preceding hidden Markov models (HMMs) that relied on pre-segmenting ion current measurements. However, the CTC-RNN model operates independently of prior biological and physical insights. RESULTS: We present a novel basecaller named Lokatt: explicit duration Markov model and residual-LSTM network. It leverages an explicit duration HMM (EDHMM) designed to model the nanopore sequencing processes. Trained on a newly generated library with methylation-free Ecoli samples and MinION R9.4.1 chemistry, the Lokatt basecaller achieves basecalling performances with a median single read identity score of 0.930, a genome coverage ratio of 99.750%, on par with existing state-of-the-art structure when trained on the same datasets. CONCLUSION: Our research underlines the potential of incorporating prior knowledge into the basecalling processes, particularly through integrating HMMs and recurrent neural networks. The Lokatt basecaller showcases the efficacy of a hybrid approach, emphasizing its capacity to achieve high-quality basecalling performance while accommodating the nuances of nanopore sequencing. These outcomes pave the way for advanced basecalling methodologies, with potential implications for enhancing the accuracy and efficiency of nanopore-based DNA sequencing protocols.


Subject(s)
Nanopores , DNA/genetics , Sequence Analysis, DNA/methods , Neural Networks, Computer , Base Sequence , High-Throughput Nucleotide Sequencing/methods
2.
Placenta ; 139: 213-216, 2023 08.
Article in English | MEDLINE | ID: mdl-37481829

ABSTRACT

Spatial transcriptomics (ST) maps RNA level patterns within a tissue. This technology has not been previously applied to human placental tissue. We demonstrate analysis of human placental samples with ST. Unsupervised clustering revealed that distinct RNA patterns were found corresponding to different morphological structures. Additionally, when focusing upon terminal villi and hemoglobin associated structures, RNA levels differed between placentas from full term healthy pregnancies and those complicated by preeclampsia. The results from this study can provide a benchmark for future ST studies in placenta.


Subject(s)
Placenta , Pre-Eclampsia , Pregnancy , Humans , Female , RNA , Transcriptome , Pre-Eclampsia/genetics , Gene Expression Profiling
3.
Nat Commun ; 14(1): 1438, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36922516

ABSTRACT

To date, single-cell studies of human white adipose tissue (WAT) have been based on small cohort sizes and no cellular consensus nomenclature exists. Herein, we performed a comprehensive meta-analysis of publicly available and newly generated single-cell, single-nucleus, and spatial transcriptomic results from human subcutaneous, omental, and perivascular WAT. Our high-resolution map is built on data from ten studies and allowed us to robustly identify >60 subpopulations of adipocytes, fibroblast and adipogenic progenitors, vascular, and immune cells. Using these results, we deconvolved spatial and bulk transcriptomic data from nine additional cohorts to provide spatial and clinical dimensions to the map. This identified cell-cell interactions as well as relationships between specific cell subtypes and insulin resistance, dyslipidemia, adipocyte volume, and lipolysis upon long-term weight changes. Altogether, our meta-map provides a rich resource defining the cellular and microarchitectural landscape of human WAT and describes the associations between specific cell types and metabolic states.


Subject(s)
Adipose Tissue, White , Transcriptome , Humans , Transcriptome/genetics , Adipose Tissue, White/metabolism , Adipocytes/metabolism , Gene Expression Profiling , Adipogenesis/genetics , Adipose Tissue
4.
Nat Biotechnol ; 41(8): 1085-1088, 2023 08.
Article in English | MEDLINE | ID: mdl-36604544

ABSTRACT

Current methods for epigenomic profiling are limited in their ability to obtain genome-wide information with spatial resolution. We introduce spatial ATAC, a method that integrates transposase-accessible chromatin profiling in tissue sections with barcoded solid-phase capture to perform spatially resolved epigenomics. We show that spatial ATAC enables the discovery of the regulatory programs underlying spatial gene expression during mouse organogenesis, lineage differentiation and in human pathology.


Subject(s)
Chromatin , Transposases , Animals , Humans , Mice , Chromatin/genetics , Transposases/genetics , Transposases/metabolism , Epigenomics/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods
6.
Cell Metab ; 33(9): 1869-1882.e6, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34380013

ABSTRACT

The contribution of cellular heterogeneity and architecture to white adipose tissue (WAT) function is poorly understood. Herein, we combined spatially resolved transcriptional profiling with single-cell RNA sequencing and image analyses to map human WAT composition and structure. This identified 18 cell classes with unique propensities to form spatially organized homo- and heterotypic clusters. Of these, three constituted mature adipocytes that were similar in size, but distinct in their spatial arrangements and transcriptional profiles. Based on marker genes, we termed these AdipoLEP, AdipoPLIN, and AdipoSAA. We confirmed, in independent datasets, that their respective gene profiles associated differently with both adipocyte and whole-body insulin sensitivity. Corroborating our observations, insulin stimulation in vivo by hyperinsulinemic-euglycemic clamp showed that only AdipoPLIN displayed a transcriptional response to insulin. Altogether, by mining this multimodal resource we identify that human WAT is composed of three classes of mature adipocytes, only one of which is insulin responsive.


Subject(s)
Insulin Resistance , Insulin , Adipocytes , Adipose Tissue , Adipose Tissue, White , Humans , Insulin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...