Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Dev Cell ; 59(10): 1233-1251.e5, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38569546

ABSTRACT

De novo brown adipogenesis holds potential in combating the epidemics of obesity and diabetes. However, the identity of brown adipocyte progenitor cells (APCs) and their regulation have not been extensively explored. Here, through in vivo lineage tracing and mouse modeling, we observed that platelet-derived growth factor receptor beta (PDGFRß)+ pericytes give rise to developmental brown adipocytes but not to those in adult homeostasis. By contrast, T-box 18 (TBX18)+ pericytes contribute to brown adipogenesis throughout both developmental and adult stages, though in a depot-specific manner. Mechanistically, Notch inhibition in PDGFRß+ pericytes promotes brown adipogenesis by downregulating PDGFRß. Furthermore, inhibition of Notch signaling in PDGFRß+ pericytes mitigates high-fat, high-sucrose (HFHS)-induced glucose and metabolic impairment in mice during their development and juvenile phases. Collectively, these findings show that the Notch/PDGFRß axis negatively regulates developmental brown adipogenesis, and its repression promotes brown adipose tissue expansion and improves metabolic health.


Subject(s)
Adipocytes, Brown , Adipogenesis , Cell Differentiation , Receptor, Platelet-Derived Growth Factor beta , Receptors, Notch , Stem Cells , Animals , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptors, Notch/metabolism , Mice , Adipocytes, Brown/metabolism , Adipocytes, Brown/cytology , Stem Cells/metabolism , Stem Cells/cytology , Signal Transduction , Pericytes/metabolism , Pericytes/cytology , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/cytology , Mice, Inbred C57BL , Male
3.
J Allergy Clin Immunol ; 152(5): 1273-1291.e15, 2023 11.
Article in English | MEDLINE | ID: mdl-37419334

ABSTRACT

BACKGROUND: Thymus hypoplasia due to stromal cell problems has been linked to mutations in several transcription factors, including Forkhead box N1 (FOXN1). FOXN1 supports T-cell development by regulating the formation and expansion of thymic epithelial cells (TECs). While autosomal recessive FOXN1 mutations result in a nude and severe combined immunodeficiency phenotype, the impact of single-allelic or compound heterozygous FOXN1 mutations is less well-defined. OBJECTIVE: With more than 400 FOXN1 mutations reported, their impact on protein function and thymopoiesis remains unclear for most variants. We developed a systematic approach to delineate the functional impact of diverse FOXN1 variants. METHODS: Selected FOXN1 variants were tested with transcriptional reporter assays and imaging studies. Thymopoiesis was assessed in mouse lines genocopying several human FOXN1 variants. Reaggregate thymus organ cultures were used to compare the thymopoietic potential of the FOXN1 variants. RESULTS: FOXN1 variants were categorized into benign, loss- or gain-of-function, and/or dominant-negatives. Dominant negative activities mapped to frameshift variants impacting the transactivation domain. A nuclear localization signal was mapped within the DNA binding domain. Thymopoiesis analyses with mouse models and reaggregate thymus organ cultures revealed distinct consequences of particular Foxn1 variants on T-cell development. CONCLUSIONS: The potential effect of a FOXN1 variant on T-cell output from the thymus may relate to its effects on transcriptional activity, nuclear localization, and/or dominant negative functions. A combination of functional assays and thymopoiesis comparisons enabled a categorization of diverse FOXN1 variants and their potential impact on T-cell output from the thymus.


Subject(s)
T-Lymphocytes , Thymus Gland , Animals , Humans , Mice , Cell Differentiation , Epithelial Cells/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Phenotype , T-Lymphocytes/metabolism
4.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37293108

ABSTRACT

De novo brown adipogenesis holds potential in combating the epidemics of obesity and diabetes. However, the identity of brown adipocyte progenitor cells (APCs) and their regulation have not been extensively studied. Here through in vivo lineage tracing, we observed that PDGFRß+ pericytes give rise to developmental brown adipocytes, but not to those in adult homeostasis. In contrast, TBX18+ pericytes contribute to brown adipogenesis throughout both developmental and adult stages, though in a depot-specific manner. Mechanistically, Notch inhibition in PDGFRß+ pericytes promotes brown adipogenesis through the downregulation of PDGFRß. Furthermore, inhibition of Notch signaling in PDGFRß+ pericytes mitigates HFHS (high-fat, high-sucrose) induced glucose and metabolic impairment in both developmental and adult stages. Collectively, these findings show that the Notch/PDGFRß axis negatively regulates developmental brown adipogenesis, and its repression promotes brown adipose tissue expansion and improves metabolic health. Highlights: PDGFRß+ pericytes act as an essential developmental brown APC.TBX18+ pericytes contribute to brown adipogenesis in a depot-specific manner.Inhibiting Notch-Pdgfrß axis promotes brown APC adipogenesis.Enhanced postnatal brown adipogenesis improves metabolic health in adult stage.

5.
J Clin Invest ; 132(22)2022 11 15.
Article in English | MEDLINE | ID: mdl-36136514

ABSTRACT

22q11.2 deletion syndrome (22q11.2DS) is the most common human chromosomal microdeletion, causing developmentally linked congenital malformations, thymic hypoplasia, hypoparathyroidism, and/or cardiac defects. Thymic hypoplasia leads to T cell lymphopenia, which most often results in mild SCID. Despite decades of research, the molecular underpinnings leading to thymic hypoplasia in 22q11.2DS remain unknown. Comparison of embryonic thymuses from mouse models of 22q11.2DS (Tbx1neo2/neo2) revealed proportions of mesenchymal, epithelial, and hematopoietic cell types similar to those of control thymuses. Yet, the small thymuses were growth restricted in fetal organ cultures. Replacement of Tbx1neo2/neo2 thymic mesenchymal cells with normal ones restored tissue growth. Comparative single-cell RNA-Seq of embryonic thymuses uncovered 17 distinct cell subsets, with transcriptome differences predominant in the 5 mesenchymal subsets from the Tbx1neo2/neo2 cell line. The transcripts affected included those for extracellular matrix proteins, consistent with the increased collagen deposition we observed in the small thymuses. Attenuating collagen cross-links with minoxidil restored thymic tissue expansion for hypoplastic lobes. In colony-forming assays, the Tbx1neo2/neo2-derived mesenchymal cells had reduced expansion potential, in contrast to the normal growth of thymic epithelial cells. These findings suggest that mesenchymal cells were causal to the small embryonic thymuses in the 22q11.2DS mouse models, which was correctable by substitution with normal mesenchyme.


Subject(s)
DiGeorge Syndrome , Humans , Animals , Mice , DiGeorge Syndrome/genetics , DiGeorge Syndrome/therapy , Disease Models, Animal , Mice, SCID , Thymus Gland
6.
Front Immunol ; 13: 864777, 2022.
Article in English | MEDLINE | ID: mdl-35757725

ABSTRACT

The thymus, a primary lymphoid organ, produces the T cells of the immune system. Originating from the 3rd pharyngeal pouch during embryogenesis, this organ functions throughout life. Yet, thymopoiesis can be transiently or permanently damaged contingent on the types of systemic stresses encountered. The thymus also undergoes a functional decline during aging, resulting in a progressive reduction in naïve T cell output. This atrophy is evidenced by a deteriorating thymic microenvironment, including, but not limited, epithelial-to-mesenchymal transitions, fibrosis and adipogenesis. An exploration of cellular changes in the thymus at various stages of life, including mouse models of in-born errors of immunity and with single cell RNA sequencing, is revealing an expanding number of distinct cell types influencing thymus functions. The thymus microenvironment, established through interactions between immature and mature thymocytes with thymus epithelial cells (TEC), is well known. Less well appreciated are the contributions of neural crest cell-derived mesenchymal cells, endothelial cells, diverse hematopoietic cell populations, adipocytes, and fibroblasts in the thymic microenvironment. In the current review, we will explore the contributions of the many stromal cell types participating in the formation, expansion, and contraction of the thymus under normal and pathophysiological processes. Such information will better inform approaches for restoring thymus functionality, including thymus organoid technologies, beneficial when an individuals' own tissue is congenitally, clinically, or accidentally rendered non-functional.


Subject(s)
Endothelial Cells , Thymocytes , Adipogenesis , Animals , Epithelial Cells/metabolism , Mice , Stromal Cells , Thymocytes/metabolism , Thymus Gland
7.
Metabolites ; 11(8)2021 Jul 25.
Article in English | MEDLINE | ID: mdl-34436420

ABSTRACT

History suggests that tasteful properties of sugar have been domesticated as far back as 8000 BCE. With origins in New Guinea, the cultivation of sugar quickly spread over centuries of conquest and trade. The product, which quickly integrated into common foods and onto kitchen tables, is sucrose, which is made up of glucose and fructose dimers. While sugar is commonly associated with flavor, there is a myriad of biochemical properties that explain how sugars as biological molecules function in physiological contexts. Substantial research and reviews have been done on the role of glucose in disease. This review aims to describe the role of its isomers, fructose and mannose, in the context of inborn errors of metabolism and other metabolic diseases, such as cancer. While structurally similar, fructose and mannose give rise to very differing biochemical properties and understanding these differences will guide the development of more effective therapies for metabolic disease. We will discuss pathophysiology linked to perturbations in fructose and mannose metabolism, diagnostic tools, and treatment options of the diseases.

8.
RNA ; 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33277439

ABSTRACT

The FACT (FAcilitates Chromatin Transactions) complex influences transcription initiation and enables passage of RNA polymerase (pol) II through gene body nucleosomes during elongation. In the budding yeast, ~280 non-coding RNA genes highly transcribed in vivo by pol III are found in the nucleosome-free regions bordered by positioned nucleosomes. The downstream nucleosome dynamics was found to regulate transcription via controlling the gene terminator accessibility and hence, terminator-dependent pol III recycling. As opposed to the enrichment at the 5'-ends of pol II-transcribed genes, our genome-wide mapping found transcription-dependent enrichment of the FACT subunit Spt16 near the 3'-end of all pol III-transcribed genes. Spt16 physically associates with the pol III transcription complex and shows gene-specific occupancy levels on the individual genes. On the non-tRNA pol III-transcribed genes, Spt16 facilitates transcription by reducing the nucleosome occupany on the gene body. On the tRNA genes, it maintains the position of the nucleosome at the 3' gene-end and affects transcription in gene-specific manner. Under nutritional stress, Spt16 enrichment is abolished in the gene downstream region of all pol III-transcribed genes and reciprocally changed on the induced or repressed pol II-transcribed ESR genes. Under the heat and replicative stress, its occupancy on the pol III-transcribed genes increases significantly. Our results show that Spt16 elicits a differential, gene-specific and stress-responsive dynamics, which provides a novel stress-sensor mechanism of regulating transcription against external stress. By primarily influencing the nucleosomal organization, FACT links the downstream nucleosome dynamics to transcription and environmental stress on the pol III-transcribed genes.

9.
Front Immunol ; 11: 830, 2020.
Article in English | MEDLINE | ID: mdl-32431714

ABSTRACT

22q11.2 deletion syndrome (DiGeorge), CHARGE syndrome, Nude/SCID and otofaciocervical syndrome type 2 (OTFCS2) are distinct clinical conditions in humans that can result in hypoplasia and occasionally, aplasia of the thymus. Thymic hypoplasia/aplasia is first suggested by absence or significantly reduced numbers of recent thymic emigrants, revealed in standard-of-care newborn screens for T cell receptor excision circles (TRECs). Subsequent clinical assessments will often indicate whether genetic mutations are causal to the low T cell output from the thymus. However, the molecular mechanisms leading to the thymic hypoplasia/aplasia in diverse human syndromes are not fully understood, partly because the problems of the thymus originate during embryogenesis. Rodent and Zebrafish models of these clinical syndromes have been used to better define the underlying basis of the clinical presentations. Results from these animal models are uncovering contributions of different cell types in the specification, differentiation, and expansion of the thymus. Cell populations such as epithelial cells, mesenchymal cells, endothelial cells, and thymocytes are variably affected depending on the human syndrome responsible for the thymic hypoplasia. In the current review, findings from the diverse animal models will be described in relation to the clinical phenotypes. Importantly, these results are suggesting new strategies for regenerating thymic tissue in patients with distinct congenital disorders.


Subject(s)
Branchio-Oto-Renal Syndrome/complications , CHARGE Syndrome/complications , DiGeorge Syndrome/complications , Immunologic Deficiency Syndromes/etiology , Severe Combined Immunodeficiency/complications , Thymus Gland/abnormalities , Animals , Branchio-Oto-Renal Syndrome/genetics , Branchio-Oto-Renal Syndrome/immunology , CHARGE Syndrome/genetics , CHARGE Syndrome/immunology , DiGeorge Syndrome/genetics , DiGeorge Syndrome/immunology , Disease Models, Animal , Humans , Immunologic Deficiency Syndromes/immunology , Mice , Mutation , Rats , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunology , Thymus Gland/embryology , Thymus Gland/immunology , Zebrafish
10.
Sci Rep ; 9(1): 12892, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31501524

ABSTRACT

The RNA polymerase (pol) III transcribes mostly short, house-keeping genes, which produce stable, non-coding RNAs. The tRNAs genes, highly transcribed by pol III in vivo are known replication fork barriers. One of the transcription factors, the PAF1C (RNA polymerase II associated factor 1 complex) is reported to associate with pol I and pol II and influence their transcription. We found low level PAF1C occupancy on the yeast pol III-transcribed genes, which is not correlated with nucleosome positions, pol III occupancy and transcription. PAF1C interacts with the pol III transcription complex and causes pol III loss from the genes under replication stress. Genotoxin exposure causes pol III but not Paf1 loss from the genes. In comparison, Paf1 deletion leads to increased occupancy of pol III, γ-H2A and DNA pol2 in gene-specific manner. Paf1 restricts the accumulation of pol III by influencing the pol III pause on the genes, which reduces the pol III barrier to the replication fork progression.


Subject(s)
DNA Replication/genetics , Nuclear Proteins/metabolism , RNA Polymerase III/metabolism , RNA, Transfer/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Stress, Physiological/genetics , DNA Damage/genetics , Gene Deletion , Histones/metabolism , Methylation , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription, Genetic
11.
Gene ; 702: 205-214, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-30593915

ABSTRACT

Eukaryotic transcription is a highly regulated fundamental life process. A large number of regulatory proteins and complexes, many of them with sequence-specific DNA-binding activity are known to influence transcription by RNA polymerase (pol) II with a fine precision. In comparison, only a few regulatory proteins are known for pol III, which transcribes genes encoding small, stable, non-translated RNAs. The pol III transcription is precisely regulated under various stress conditions. We used pol III transcription complex (TC) components TFIIIC (Tfc6), pol III (Rpc128) and TFIIIB (Brf1) as baits and mass spectrometry to identify their potential interactors in vivo. A large interactome constituting chromatin modifiers, regulators and factors of transcription by pol I and pol II supports the possibility of a crosstalk between the three transcription machineries. The association of proteins and complexes involved in various basic life processes like ribogenesis, RNA processing, protein folding and degradation, DNA damage response, replication and transcription underscores the possibility of the pol III TC serving as a signaling hub for communication between the transcription and other cellular physiological activities under normal growth conditions. We also found an equally large number of proteins and complexes interacting with the TC under nutrient starvation condition, of which at least 25% were non-identical under the two conditions. The data reveal the possibility of a large number of signaling cues for pol III transcription against adverse conditions, necessary for an efficient co-ordination of various cellular functions.


Subject(s)
RNA Polymerase III/metabolism , RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Transcription, Genetic , Chromatin/metabolism , Cytoplasm/metabolism , Gene Expression Regulation, Fungal , Protein Interaction Mapping , Saccharomyces cerevisiae/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...