Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 435(14): 168115, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37356913

ABSTRACT

Biofilms are one of the leading causes of antibiotic resistance. It acts as a physical barrier against the human immune system and drugs. The use of anti-biofilm agents helps in tackling the menace of antibiotic resistance. The identification of efficient anti-biofilm chemicals remains a challenge. Therefore, in this study, we developed 'anti-Biofilm', a machine learning technique (MLT) based predictive algorithm for identifying and analyzing the biofilm inhibition of small molecules. The algorithm is developed using experimentally validated anti-biofilm compounds with half maximal inhibitory concentration (IC50) values extracted from aBiofilm resource. Out of the five MLTs, the Support Vector Machine performed best with Pearson's correlation coefficient of 0.75 on the training/testing data set. The robustness of the developed model was further checked using an independent validation dataset. While analyzing the chemical diversity of the anti-biofilm compounds, we observed that they occupy diverse chemical spaces with parent molecules like furanone, urea, phenolic acids, quinolines, and many more. Use of diverse chemicals as input further signifies the robustness of our predictive models. The three best-performing machine learning models were implemented as a user-friendly 'anti-Biofilm' web server (https://bioinfo.imtech.res.in/manojk/antibiofilm/) with different other modules which make 'anti-Biofilm' a comprehensive platform. Therefore, we hope that our initiative will be helpful for the scientific community engaged in identifying effective anti-biofilm agents to target the problem of antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents , Biofilms , Drug Repositioning , Drug Resistance, Bacterial , Machine Learning , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Microbial Sensitivity Tests , Inhibitory Concentration 50
2.
Molecules ; 27(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35956807

ABSTRACT

Antibiotic drug resistance has emerged as a major public health threat globally. One of the leading causes of drug resistance is the colonization of microorganisms in biofilm mode. Hence, there is an urgent need to design novel and highly effective biofilm inhibitors that can work either synergistically with antibiotics or individually. Therefore, we have developed a recursive regression-based platform "Biofilm-i" employing a quantitative structure-activity relationship approach for making generalized predictions, along with group and species-specific predictions of biofilm inhibition efficiency of chemical(s). The platform encompasses eight predictors, three analysis tools, and data visualization modules. The experimentally validated biofilm inhibitors for model development were retrieved from the "aBiofilm" resource and processed using a 10-fold cross-validation approach using the support vector machine and andom forest machine learning techniques. The data was further sub-divided into training/testing and independent validation sets. From training/testing data sets the Pearson's correlation coefficient of overall chemicals, Gram-positive bacteria, Gram-negative bacteria, fungus, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Escherichia coli was 0.60, 0.77, 0.62, 0.77, 0.73, 0.83, 0.70, and 0.71 respectively via Support Vector Machine. Further, all the QSAR models performed equally well on independent validation data sets. Additionally, we also checked the performance of the random forest machine learning technique for the above datasets. The integrated analysis tools can convert the chemical structure into different formats, search for a similar chemical in the aBiofilm database and design the analogs. Moreover, the data visualization modules check the distribution of experimentally validated biofilm inhibitors according to their common scaffolds. The Biofilm-i platform would be of immense help to researchers engaged in designing highly efficacious biofilm inhibitors for tackling the menace of antibiotic drug resistance.


Subject(s)
Biofilms , Quantitative Structure-Activity Relationship , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Support Vector Machine
3.
Front Microbiol ; 11: 1858, 2020.
Article in English | MEDLINE | ID: mdl-32849449

ABSTRACT

In December 2019, the Chinese city of Wuhan was the center of origin of a pneumonia-like disease outbreak with an unknown causative pathogen. The CDC, China, managed to track the source of infection to a novel coronavirus (2019-nCoV; SARS-CoV-2) that shares approximately 79.6% of its genome with SARS-CoV. The World Health Organization (WHO) initially declared COVID-19 as a Public Health Emergency of International Concern (PHEIC) and later characterized it as a global pandemic on March 11, 2020. Due to the novel nature of this virus, there is an urgent need for vaccines and therapeutics to control the spread of SARS-CoV-2 and its associated disease, COVID-19. Global efforts are underway to circumvent its further spread and treat COVID-19 patients through experimental vaccine formulations and therapeutic interventions, respectively. In the absence of any effective therapeutics, we have devised h bioinformatics-based approaches to accelerate global efforts in the fight against SARS-CoV-2 and to assist researchers in the initial phase of vaccine and therapeutics development. In this study, we have performed comprehensive meta-analyses and developed an integrative resource, "CoronaVR" (http://bioinfo.imtech.res.in/manojk/coronavr/). Predominantly, we identified potential epitope-based vaccine candidates, siRNA-based therapeutic regimens, and diagnostic primers. The resource is categorized into the main sections "Genomes," "Epitopes," "Therapeutics," and Primers." The genome section harbors different components, viz, genomes, a genome browser, phylogenetic analysis, codon usage, glycosylation sites, and structural analysis. Under the umbrella of epitopes, sub-divisions, namely cross-protective epitopes, B-cell (linear/discontinuous), T-cell (CD4+/CD8+), CTL, and MHC binders, are presented. The therapeutics section has different sub-sections like siRNA, miRNAs, and sgRNAs. Further, experimentally confirmed and designed diagnostic primers are earmarked in the primers section. Our study provided a set of shortlisted B-cell and T-cell (CD4+ and CD8+) epitopes that can be experimentally tested for their incorporation in vaccine formulations. The list of selected primers can be used in testing kits to identify SARS-CoV-2, while the recommended siRNAs, sgRNAs, and miRNAs can be used in therapeutic regimens. We foresee that this resource will help in advancing the research against coronaviruses.

SELECTION OF CITATIONS
SEARCH DETAIL
...