Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 109: 129825, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823730

ABSTRACT

Human African trypanosomiasis, or sleeping sickness, is a neglected tropical disease caused by Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense and is invariably fatal unless treated. Current therapies present limitations in their application, parasite resistance, or require further clinical investigation for wider use. Our work, informed by previous findings, presents novel 4-[4-(4-methylpiperazin-1-yl)phenyl]-6-arylpyrimidine derivatives with promising antitrypanosomal activity. In particular, 32 exhibits an in vitro EC50 value of 0.5 µM against Trypanosoma brucei rhodesiense, and analogues 29, 30 and 33 show antitrypanosomal activities in the <1 µM range. We have demonstrated that substituted 4-[4-(4-methylpiperazin-1-yl)phenyl]-6-arylpyrimidines present promising antitrypanosomal hit molecules with potential for further preclinical development.

2.
Mol Divers ; 2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36617352

ABSTRACT

Virtual screening a collection of ~ 25,000 ChemBridge molecule collection identified two nitrogenous heterocyclic molecules, 12 and 15, with potential dual inhibitory properties against trypanosomal cruzain and rhodesain cysteine proteases. Similarity search in DrugBank found the two virtual hits with novel chemical structures with unreported anti-trypanosomal activities. Investigations into the binding mechanism by molecular dynamics simulations for 100 ns revealed the molecules were able to occupy the binding sites and stabilise the protease complexes. Binding affinities calculated using the MM/PBSA method for the last 20 ns showed that the virtual hits have comparable binding affinities to other known inhibitors from literature suggesting both molecules as promising scaffolds with dual cruzain and rhodesain inhibition properties, i.e. 12 has predicted ΔGbind values of - 38.1 and - 38.2 kcal/mol to cruzain and rhodesain, respectively, and 15 has predicted ΔGbind values of - 34.4 and - 25.8 kcal/mol to rhodesain. Per residue binding free energy decomposition studies and visual inspection at 100 ns snapshots revealed hydrogen bonding and non-polar attractions with important amino acid residues that contributed to the ΔGbind values. The interactions are similar to those previously reported in the literature. The overall ADMET predictions for the two molecules were favourable for drug development with acceptable pharmacokinetic profiles and adequate oral bioavailability.

3.
Phytochem Anal ; 32(1): 62-68, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32706176

ABSTRACT

INTRODUCTION: Analysis of biochemical pathways typically involves feeding a labelled precursor to an organism, and then monitoring the metabolic fate of the label. Initial studies used radioisotopes as a label and then monitored radioactivity in the metabolic products. As analytical equipment improved and became more widely available, preference shifted the use stable 'heavy' isotopes like deuterium (2 H)-, carbon-13 (13 C)- and nitrogen-15 (15 N)-atoms as labels. Incorporation of the labels could be monitored by mass spectrometry (MS), as part of a hyphenated tool kits, e.g. Liquid chromatography (LC)-MS, gas chromatography (GC)-MS, LC-MS/MS. MS offers great sensitivity but the exact location of an isotope label in a given metabolite cannot always be unambiguously established. Nuclear magnetic resonance (NMR) can also be used to pick up signals of stable isotopes, and can give information on the precise location of incorporated label in the metabolites. However, the detection limit for NMR is quite a bit higher than that for MS. OBJECTIVES: A number of experiments involving feeding stable isotope-labelled precursors followed by NMR analysis of the metabolites is presented. The aim is to highlight the use of NMR analysis in identifying the precise fate of isotope labels after precursor feeding experiments. As more powerful NMR equipment becomes available, applications as described in this review may become more commonplace in pathway analysis. CONCLUSION AND PROSPECTS: NMR is a widely accepted tool for chemical structure elucidation and is now increasingly used in metabolomic studies. In addition, NMR, combined with stable isotope feeding, should be considered as a tool for metabolic flux analyses.


Subject(s)
Secondary Metabolism , Tandem Mass Spectrometry , Carbon Isotopes , Chromatography, Liquid , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy
4.
Eur J Med Chem ; 209: 112871, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33070078

ABSTRACT

Human African trypanosomiasis, or sleeping sickness, is a neglected tropical disease caused by Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense which seriously affects human health in Africa. Current therapies present limitations in their application, parasite resistance, or require further clinical investigation for wider use. Our work herein describes the design and syntheses of novel antitrypanosomal 4-phenyl-6-(pyridin-3-yl)pyrimidines, with compound 13, the 4-(2-methoxyphenyl)-6-(pyridine-3-yl)pyrimidin-2-amine demonstrating an IC50 value of 0.38 µM and a promising off-target ADME-Tox profile in vitro. In silico molecular target investigations showed rhodesain to be a putative candidate, supported by STD and WaterLOGSY NMR experiments, however, in vitro evaluation of compound 13 against rhodesain exhibited low experimental inhibition. Therefore, our reported library of drug-like pyrimidines present promising scaffolds for further antikinetoplastid drug development for both phenotypic and target-based drug discovery.


Subject(s)
Pyrimidines/chemistry , Pyrimidines/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma brucei rhodesiense/drug effects , Trypanosomiasis, African/drug therapy , Animals , Cell Line , Drug Discovery , Humans , Models, Molecular , Rats
5.
Int J Mol Sci ; 19(4)2018 Mar 26.
Article in English | MEDLINE | ID: mdl-29587452

ABSTRACT

Linum flavum hairy root lines were established from hypocotyl pieces using Agrobacterium rhizogenes strains LBA 9402 and ATCC 15834. Both strains were effective for transformation but induction of hairy root phenotype was more stable with strain ATCC 15834. Whereas similar accumulation patterns were observed in podophyllotoxin-related compounds (6-methoxy-podophyllotoxin, podophyllotoxin and deoxypodophyllotoxin), significant quantitative variations were noted between root lines. The influence of culture medium and various treatments (hormone, elicitation and precursor feeding) were evaluated. The highest accumulation was obtained in Gamborg B5 medium. Treatment with methyl jasmonate, and feeding using ferulic acid increased the accumulation of aryltetralin lignans. These results point to the use of hairy root culture lines of Linum flavum as potential sources for these valuable metabolites as an alternative, or as a complement to Podophyllum collected from wild stands.


Subject(s)
Antineoplastic Agents, Phytogenic/metabolism , Flax/cytology , Lignans/metabolism , Acetates/pharmacology , Antineoplastic Agents, Phytogenic/analysis , Coumaric Acids/pharmacology , Culture Media/chemistry , Culture Media/pharmacology , Cyclopentanes/pharmacology , Flax/drug effects , Flax/growth & development , Flax/metabolism , Lignans/analysis , Molecular Structure , Oxylipins/pharmacology , Plant Roots/cytology , Plant Roots/drug effects , Plant Roots/metabolism , Tissue Culture Techniques/methods
6.
Mol Biotechnol ; 60(2): 169-183, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29290031

ABSTRACT

Plant secondary metabolism evolved in the context of highly organized and differentiated cells and tissues, featuring massive chemical complexity operating under tight environmental, developmental and genetic control. Biotechnological demand for natural products has been continuously increasing because of their significant value and new applications, mainly as pharmaceuticals. Aseptic production systems of plant secondary metabolites have improved considerably, constituting an attractive tool for increased, stable and large-scale supply of valuable molecules. Surprisingly, to date, only a few examples including taxol, shikonin, berberine and artemisinin have emerged as success cases of commercial production using this strategy. The present review focuses on the main characteristics of plant specialized metabolism and their implications for current strategies used to produce secondary compounds in axenic cultivation systems. The search for consonance between plant secondary metabolism unique features and various in vitro culture systems, including cell, tissue, organ, and engineered cultures, as well as heterologous expression in microbial platforms, is discussed. Data to date strongly suggest that attaining full potential of these biotechnology production strategies requires being able to take advantage of plant specialized metabolism singularities for improved target molecule yields and for bypassing inherent difficulties in its rational manipulation.


Subject(s)
Biological Products/metabolism , Biotechnology/methods , Metabolic Engineering/methods , Phytochemicals/biosynthesis , Plant Cells/metabolism , Plants/metabolism , Artemisinins/isolation & purification , Artemisinins/metabolism , Axenic Culture , Berberine/isolation & purification , Berberine/metabolism , Biological Products/isolation & purification , Cell Culture Techniques , Naphthoquinones/isolation & purification , Naphthoquinones/metabolism , Paclitaxel/biosynthesis , Paclitaxel/isolation & purification , Phytochemicals/isolation & purification , Plant Cells/chemistry , Plants/chemistry , Plants/genetics , Secondary Metabolism , Tissue Culture Techniques
7.
Med Chem ; 14(4): 322-332, 2018.
Article in English | MEDLINE | ID: mdl-29332599

ABSTRACT

BACKGROUND: Although the expression levels of many P450s differ between tumour and corresponding normal tissue, CYP1B1 is one of the few CYP subfamilies which is significantly and consistently overexpressed in tumours. CYP1B1 has been shown to be active within tumours and is capable of metabolising a structurally diverse range of anticancer drugs. Because of this, and its role in the activation of procarcinogens, CYP1B1 is seen as an important target for anticancer drug development. OBJECTIVE: To synthesise a series of chalcone derivatives based on the chemopreventative agent DMU-135 and investigate their antiproliferative activities in human breast cancer cell lines which express CYP1B1 and CYP1A1. METHOD: A series of chalcones were synthesised in yields of 43-94% using the Claisen-Schmidt condensation reaction. These were screened using a MTT assay against a panel of breast cancer cell lines which have been characterised for CYP1 expression. RESULT: A number of derivatives showed promising antiproliferative activities in human breast cancer cell lines which express CYP1B1 and CYP1A1, while showing significantly lower toxicity towards a non-tumour breast cell line with no CYP expression. Experiments using the CYP1 inhibitors acacetin and α-naphthoflavone provided supporting evidence for the involvement of CYP1 enzymes in the bioactivation of these compounds. CONCLUSION: Chalcones show promise as anticancer agents with evidence suggesting that CYP1 activation of these compounds may be involved.


Subject(s)
Antineoplastic Agents/pharmacology , Chalcone/analogs & derivatives , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Prodrugs/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Benzoflavones/pharmacology , Breast Neoplasms/drug therapy , Cell Line, Tumor , Chalcone/chemical synthesis , Chalcone/chemistry , Chalcone/pharmacology , Chalcone/toxicity , Cytochrome P-450 CYP1A1/antagonists & inhibitors , Cytochrome P-450 CYP1B1/antagonists & inhibitors , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme Inhibitors/toxicity , Flavones/pharmacology , Humans , Molecular Structure , Prodrugs/chemical synthesis , Prodrugs/chemistry , Prodrugs/toxicity
8.
Eur J Med Chem ; 128: 213-218, 2017 Mar 10.
Article in English | MEDLINE | ID: mdl-28189085

ABSTRACT

A library of novel pyridylchalcones were synthesised and screened against Trypanosoma brucei rhodesiense. Eight were shown to have good activity with the most potent 8 having an IC50 value of 0.29 µM. Cytotoxicity testing with human KB cells showed a good selectivity profile for this compound with a selectivity index of 47. Little activity was seen when the library was tested against Leishmania donovani. In conclusion, pyridylchalcones are promising leads in the development of novel compounds for the treatment of human African trypanosomiasis (HAT).


Subject(s)
Chagas Disease/drug therapy , Chalcones/chemistry , Propane/analogs & derivatives , Pyridines/chemical synthesis , Pyridines/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cells, Cultured , Chagas Disease/parasitology , Humans , Leishmania donovani/drug effects , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Models, Molecular , Molecular Structure , Parasitic Sensitivity Tests , Propane/chemical synthesis , Propane/pharmacology , Structure-Activity Relationship
9.
Eur J Med Chem ; 108: 347-353, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26698538

ABSTRACT

Current treatments for Human African Trypanosomiasis (HAT) are limited in their application, have undesirable dosing regimens and unsatisfactory toxicities highlighting the need for the development of a safer drug pipeline. Our medicinal chemistry programme in developing rapidly accessible and modifiable heterocyclic scaffolds led to the design and synthesis of novel substituted benzothiophenes, with 6-benzimidazol-1-ylbenzothiophene derivatives demonstrating significant antitrypanosomal activities (IC50 < 1 µM) against Trypanosoma brucei rhodesiense and no toxicity towards mammalian cells.


Subject(s)
Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/pharmacology , Drug Design , Thiophenes/chemical synthesis , Thiophenes/pharmacology , Trypanosoma brucei rhodesiense/drug effects , Antiprotozoal Agents/chemistry , Dose-Response Relationship, Drug , Models, Molecular , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Thiophenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...