Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nord Pulp Paper Res J ; 32(3): 375-385, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-29292802

ABSTRACT

The U.S. is the world's second-leading producer of pulp and paper products after China. Boilers, recovery furnaces, and lime kilns are the dominant sources of emissions from pulp and paper mills, collectively accounting for more than 99 % of the SO2, almost 96 % of the NOX, and more than 85 % of the particulate matter (PM) emitted to the air from this sector in the U.S. The process of developing industrial strategies for managing emissions can be made efficient, and the resulting strategies more cost-effective, through the application of modeling that accounts for relevant technical, environmental and economic factors. Accordingly, the United States Environmental Protection Agency is developing the Universal Industrial Sectors Integrated Solutions module for the Pulp and Paper Industry (UISIS-PNP). It can be applied to evaluate emissions and economic performance of pulp and paper mills separately under user-defined pollution control strategies. In this paper, we discuss the UISIS-PNP module, the pulp and paper market and associated air emissions from the pulp and paper sector. After illustrating the sector-based multi-product modeling structure, a hypothetical example is presented to show the engineering and economic considerations involved in the emission-reduction modeling of the pulp and paper sector in the U.S.

2.
Energy Emiss Control Technol ; 5: 27-37, 2017 Aug 04.
Article in English | MEDLINE | ID: mdl-32704502

ABSTRACT

The US pulp and paper (PNP) industry utilizes a variety of fuels to provide energy for process needs, resulting in air emissions of sulfur dioxide (SO2), nitrogen oxides (NOX), particulate matter (PM), and greenhouse gases such as carbon dioxide (CO2). Emissions from this sector have largely declined and continue to decline steadily since the mid-1990s, reflecting changes in fuel types used and their sulfur content, fluctuation in PNP production, increase in the volume of recycling, efficiency gains throughout the sector, and capital investments for compliance with regulations. Because of the above factors, recent market trends favoring the use of natural gas over coal, and more demanding regulatory limits, it is reasonable to expect that air emissions from the sector will continue to decline in the near future. Boilers have been the dominant source of SO2, NOX, PM, and CO2 emissions for the sector. It would, therefore, be of interest to understand how air pollution controls have been applied to date on new, existing, and replaced units, as well as the cost and emission reductions associated with expanding their use throughout the sector. In the work described here, the Universal Industrial Sectors Integrated Solutions (UISIS) model developed by the U.S. Environmental Protection Agency is used to examine the emission reduction potential and cost of controls. This paper briefly characterizes air emissions from boilers operating in the PNP sector and reviews the menu of air pollution control technologies applicable to the sector. Then, after describing the UISIS PNP model, modeling results are presented, in which several illustrative air emission reduction strategies are assessed, including fuel switching, installation of air pollution control equipment, and implementation of energy efficiency measures.

3.
Waste Manag ; 31(4): 619-30, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21169006

ABSTRACT

The waste-LCA model EASEWASTE quantifies potential environmental effects from biological treatment of organic waste, based on mass and energy flows, emissions to air, water, soil and groundwater as well as effects from upstream and downstream processes. Default technologies for composting, anaerobic digestion and combinations hereof are available in the model, but the user can change all key parameters in the biological treatment module so that specific local plants and processes can be modelled. EASEWASTE is one of the newest waste LCA models and the biological treatment module was built partly on features of earlier waste-LCA models, but offers additional facilities, more flexibility, transparency and user-friendliness. The paper presents the main features of the module and provides some examples illustrating the capability of the model in environmentally assessing and discriminating the environmental performance of alternative biological treatment technologies in relation to their mass flows, energy consumption, gaseous emissions, biogas recovery and compost/digestate utilization.


Subject(s)
Biological Products/analysis , Environment , Models, Theoretical , Waste Management/methods , Waste Products/analysis , Anaerobiosis , Biological Products/isolation & purification , Biological Products/metabolism , Cities , Waste Products/classification
4.
Waste Manag Res ; 26(1): 96-103, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18338706

ABSTRACT

A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model is a module in the life-cycle assessment model EASEWASTE. The module accounts for all uses of materials and energy and credits the incinerator for electricity and heat recovered. The energy recovered is defined by the user as a percentage of the energy produced, calculated on the lower heating value of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input is defined by 48 material fractions and their chemical composition. The model was used to quantify the environmental performance of the incineration plant in Aarhus, Denmark before and after its upgrading in terms of improved flue gas cleaning and energy recovery. It demonstrated its usefulness in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator.


Subject(s)
Environmental Monitoring/methods , Environmental Pollution/analysis , Incineration , Refuse Disposal/methods , Waste Management/methods , Decision Support Techniques , Denmark , Environment , Environmental Pollution/prevention & control , Models, Theoretical
5.
Waste Manag Res ; 25(3): 257-62, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17612326

ABSTRACT

Life-cycle assessment (LCA) models are becoming the principal decision support tools of waste management systems. This paper describes our experience with the use of EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies), a new computerized LCA-based model for integrated waste management. Our findings provide a quantitative understanding of waste management systems and may reveal consistent approaches to improve their environmental performances. EASEWASTE provides a versatile system modelling facility combined with a complete life-cycle impact assessment and in addition to the traditional impact categories addresses toxicity-related categories. New categories dealing with stored ecotoxicity and spoiled groundwater resources have been introduced. EASEWASTE has been applied in several studies, including full-scale assessments of waste management in Danish municipalities. These studies led to numerous modelling issues: the need of combining process-specific and input-specific emissions, the choice of a meaningful time horizon, the way of accounting for biological carbon emissions, the problem of stored ecotoxicity and aspects of crediting the waste management system with the savings inherent in avoided production of energy and materials. Interpretation of results showed that waste management systems can be designed in an environmentally sustainable manner where energy recovery processes lead to substantial avoidance of emissions and savings of resources.


Subject(s)
Conservation of Natural Resources , Ecosystem , Refuse Disposal/methods , Waste Management/methods , Water Supply , Environmental Monitoring , Environmental Pollution/prevention & control , Humans , Models, Theoretical , Risk Assessment
6.
Waste Manag Res ; 24(2): 153-66, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16634230

ABSTRACT

A model capable of quantifying the potential environmental impacts of agricultural application of composted or anaerobically digested source-separated organic municipal solid waste (MSW) is presented. In addition to the direct impacts, the model accounts for savings by avoiding the production and use of commercial fertilizers. The model is part of a larger model, Environmental Assessment of Solid Waste Systems and Technology (EASEWASTE), developed as a decision-support model, focusing on assessment of alternative waste management options. The environmental impacts of the land application of processed organic waste are quantified by emission coefficients referring to the composition of the processed waste and related to specific crop rotation as well as soil type. The model contains several default parameters based on literature data, field experiments and modelling by the agro-ecosystem model, Daisy. All data can be modified by the user allowing application of the model to other situations. A case study including four scenarios was performed to illustrate the use of the model. One tonne of nitrogen in composted and anaerobically digested MSW was applied as fertilizer to loamy and sandy soil at a plant farm in western Denmark. Application of the processed organic waste mainly affected the environmental impact categories global warming (0.4-0.7 PE), acidification (-0.06 (saving)-1.6 PE), nutrient enrichment (-1.0 (saving)-3.1 PE), and toxicity. The main contributors to these categories were nitrous oxide formation (global warming), ammonia volatilization (acidification and nutrient enrichment), nitrate losses (nutrient enrichment and groundwater contamination), and heavy metal input to soil (toxicity potentials). The local agricultural conditions as well as the composition of the processed MSW showed large influence on the environmental impacts. A range of benefits, mainly related to improved soil quality from long-term application of the processed organic waste, could not be generally quantified with respect to the chosen life cycle assessment impact categories and were therefore not included in the model. These effects should be considered in conjunction with the results of the life cycle assessment.


Subject(s)
Agriculture/methods , Environmental Monitoring , Models, Theoretical , Refuse Disposal/methods , Decision Support Techniques , Environment , Environmental Pollution , Fertilizers , Models, Biological , Soil/analysis , Soil/standards
7.
Waste Manag Res ; 24(1): 3-15, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16496866

ABSTRACT

A new model has been developed for evaluating the overall resource consumption and environmental impacts of municipal solid waste management systems by the use of life cycle assessment. The model is named EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies) and is able to compare different waste management strategies, waste treatment methods and waste process technologies. The potential environmental impacts can be traced back to the most important processes and waste fractions that contribute to the relevant impacts. A model like EASEWASTE can be used by waste planners to optimize current waste management systems with respect to environmental achievements and by authorities to set guidelines and regulations and to evaluate different strategies for handling of waste. The waste hierarchy has for decades been governing waste management but the ranking of handling approaches may not always be the most environmentally friendly. The EASEWASTE model can identify the most environmentally sustainable solution, which may differ among waste materials and regions and can add valuable information about environmental achievements from each process in a solid waste management system.


Subject(s)
Environment , Models, Theoretical , Refuse Disposal/methods , Environmental Pollution/analysis , Soil , Waste Products/classification
8.
Waste Manag Res ; 24(1): 16-26, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16496867

ABSTRACT

A new computer based life cycle assessment model (EASEWASTE) was used to evaluate a municipal solid waste system with the purpose of identifying environmental benefits and disadvantages by anaerobic digestion of source-separated household waste and incineration. The most important processes that were included in the study are optical sorting and pre-treatment, anaerobic digestion with heat and power recovery, incineration with heat and power recovery, use of digested biomass on arable soils and finally, an estimated surplus consumption of plastic in order to achieve a higher quality and quantity of organic waste to the biogas plant. Results showed that there were no significant differences in most of the assessed environmental impacts for the two scenarios. However, the use of digested biomass may cause a potential toxicity impact on human health due to the heavy metal content of the organic waste. A sensitivity analysis showed that the results are sensitive to the energy recovery efficiencies, to the extra plastic consumption for waste bags and to the content of heavy metals in the waste. A model such as EASEWASTE is very suitable for evaluating the overall environmental consequences of different waste management strategies and technologies, and can be used for most waste material fractions existing in household waste.


Subject(s)
Environment , Models, Theoretical , Refuse Disposal , Cities , Decision Support Techniques , Denmark
SELECTION OF CITATIONS
SEARCH DETAIL
...