Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Cancer Res ; 83(21): 3611-3623, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37603596

ABSTRACT

For a majority of patients with non-small cell lung cancer with EGFR mutations, treatment with EGFR inhibitors (EGFRi) induces a clinical response. Despite this initial reduction in tumor size, residual disease persists that leads to disease relapse. Elucidating the preexisting biological differences between sensitive cells and surviving drug-tolerant persister cells and deciphering how drug-tolerant cells evolve in response to treatment could help identify strategies to improve the efficacy of EGFRi. In this study, we tracked the origins and clonal evolution of drug-tolerant cells at a high resolution by using an expressed barcoding system coupled with single-cell RNA sequencing. This platform enabled longitudinal profiling of gene expression and drug sensitivity in response to EGFRi across a large number of clones. Drug-tolerant cells had higher expression of key survival pathways such as YAP and EMT at baseline and could also differentially adapt their gene expression following EGFRi treatment compared with sensitive cells. In addition, drug combinations targeting common downstream components (MAPK) or orthogonal factors (chemotherapy) showed greater efficacy than EGFRi alone, which is attributable to broader targeting of the heterogeneous EGFRi-tolerance mechanisms present in tumors. Overall, this approach facilitates thorough examination of clonal evolution in response to therapy that could inform the development of improved diagnostic approaches and treatment strategies for targeting drug-tolerant cells. SIGNIFICANCE: The evolution and heterogeneity of EGFR inhibitor tolerance are identified in a large number of clones at enhanced cellular and temporal resolution using an expressed barcode technology coupled with single-cell RNA sequencing.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , ErbB Receptors/genetics , ErbB Receptors/metabolism , Neoplasm Recurrence, Local , Drug Tolerance
2.
Cell Chem Biol ; 30(3): 235-247.e12, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36863346

ABSTRACT

Malignant tumors can evade destruction by the immune system by attracting immune-suppressive regulatory T cells (Treg) cells. The IKZF2 (Helios) transcription factor plays a crucial role in maintaining function and stability of Treg cells, and IKZF2 deficiency reduces tumor growth in mice. Here we report the discovery of NVP-DKY709, a selective molecular glue degrader of IKZF2 that spares IKZF1/3. We describe the recruitment-guided medicinal chemistry campaign leading to NVP-DKY709 that redirected the degradation selectivity of cereblon (CRBN) binders from IKZF1 toward IKZF2. Selectivity of NVP-DKY709 for IKZF2 was rationalized by analyzing the DDB1:CRBN:NVP-DKY709:IKZF2(ZF2 or ZF2-3) ternary complex X-ray structures. Exposure to NVP-DKY709 reduced the suppressive activity of human Treg cells and rescued cytokine production in exhausted T-effector cells. In vivo, treatment with NVP-DKY709 delayed tumor growth in mice with a humanized immune system and enhanced immunization responses in cynomolgus monkeys. NVP-DKY709 is being investigated in the clinic as an immune-enhancing agent for cancer immunotherapy.


Subject(s)
Neoplasms , Transcription Factors , Animals , Humans , Mice , Ikaros Transcription Factor , Immunotherapy , Neoplasms/therapy , Neoplasms/metabolism , T-Lymphocytes, Regulatory/metabolism , Transcription Factors/metabolism
3.
Oncogene ; 41(1): 112-124, 2022 01.
Article in English | MEDLINE | ID: mdl-34703030

ABSTRACT

Intratumoral heterogeneity has been described for various tumor types and models of human cancer, and can have profound effects on tumor progression and drug resistance. This study describes an in-depth analysis of molecular and functional heterogeneity among subclonal populations (SCPs) derived from a single triple-negative breast cancer cell line, including copy number analysis, whole-exome and RNA sequencing, proteome analysis, and barcode analysis of clonal dynamics, as well as functional assays. The SCPs were found to have multiple unique genetic alterations and displayed significant variation in anchorage independent growth and tumor forming ability. Analyses of clonal dynamics in SCP mixtures using DNA barcode technology revealed selection for distinct clonal populations in different in vitro and in vivo environmental contexts, demonstrating that in vitro propagation of cancer cell lines using different culture conditions can contribute to the establishment of unique strains. These analyses also revealed strong enrichment of a single SCP during the development of xenograft tumors in immune-compromised mice. This SCP displayed attenuated interferon signaling in vivo and reduced sensitivity to the antiproliferative effects of type I interferons. Reduction in interferon signaling was found to provide a selective advantage within the xenograft microenvironment specifically. In concordance with the previously described role of interferon signaling as tumor suppressor, these findings suggest that similar selective pressures may be operative in human cancer and patient-derived xenograft models.


Subject(s)
Genetic Heterogeneity , Triple Negative Breast Neoplasms/genetics , Tumor Microenvironment/genetics , Animals , Humans , Mice , Mutation , Triple Negative Breast Neoplasms/pathology
4.
Mol Cancer Res ; 20(3): 361-372, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34799403

ABSTRACT

Various subunits of mammalian SWI/SNF chromatin remodeling complexes display loss-of-function mutations characteristic of tumor suppressors in different cancers, but an additional role for SWI/SNF supporting cell survival in distinct cancer contexts is emerging. In particular, genetic dependence on the catalytic subunit BRG1/SMARCA4 has been observed in acute myelogenous leukemia (AML), yet the feasibility of direct therapeutic targeting of SWI/SNF catalytic activity in leukemia remains unknown. Here, we evaluated the activity of dual BRG1/BRM ATPase inhibitors across a genetically diverse panel of cancer cell lines and observed that hematopoietic cancer cell lines were among the most sensitive compared with other lineages. This result was striking in comparison with data from pooled short hairpin RNA screens, which showed that only a subset of leukemia cell lines display sensitivity to BRG1 knockdown. We demonstrate that combined genetic knockdown of BRG1 and BRM is required to recapitulate the effects of dual inhibitors, suggesting that SWI/SNF dependency in human leukemia extends beyond a predominantly BRG1-driven mechanism. Through gene expression and chromatin accessibility studies, we show that the dual inhibitors act at genomic loci associated with oncogenic transcription factors, and observe a downregulation of leukemic pathway genes, including MYC, a well-established target of BRG1 activity in AML. Overall, small-molecule inhibition of BRG1/BRM induced common transcriptional responses across leukemia models resulting in a spectrum of cellular phenotypes. IMPLICATIONS: Our studies reveal the breadth of SWI/SNF dependency in leukemia and support targeting SWI/SNF catalytic function as a potential therapeutic strategy in AML.


Subject(s)
Adenosine Triphosphatases , Leukemia, Myeloid, Acute , Adenosine Triphosphatases/genetics , Animals , Carcinogenesis , Chromatin Assembly and Disassembly , DNA Helicases/genetics , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mammals/genetics , Mammals/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Mol Cancer Ther ; 19(10): 2186-2195, 2020 10.
Article in English | MEDLINE | ID: mdl-32747420

ABSTRACT

Uveal melanoma is a rare and aggressive cancer that originates in the eye. Currently, there are no approved targeted therapies and very few effective treatments for this cancer. Although activating mutations in the G protein alpha subunits, GNAQ and GNA11, are key genetic drivers of the disease, few additional drug targets have been identified. Recently, studies have identified context-specific roles for the mammalian SWI/SNF chromatin remodeling complexes (also known as BAF/PBAF) in various cancer lineages. Here, we find evidence that the SWI/SNF complex is essential through analysis of functional genomics screens and further validation in a panel of uveal melanoma cell lines using both genetic tools and small-molecule inhibitors of SWI/SNF. In addition, we describe a functional relationship between the SWI/SNF complex and the melanocyte lineage-specific transcription factor Microphthalmia-associated Transcription Factor, suggesting that these two factors cooperate to drive a transcriptional program essential for uveal melanoma cell survival. These studies highlight a critical role for SWI/SNF in uveal melanoma, and demonstrate a novel path toward the treatment of this cancer.


Subject(s)
Chromatin/metabolism , Melanoma/genetics , Uveal Neoplasms/genetics , Animals , Cell Line, Tumor , Chromosomal Proteins, Non-Histone , Humans , Mice , Transcription Factors
6.
Clin Cancer Res ; 25(10): 3164-3175, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30674502

ABSTRACT

PURPOSE: The selective MET inhibitor capmatinib is being investigated in multiple clinical trials, both as a single agent and in combination. Here, we describe the preclinical data of capmatinib, which supported the clinical biomarker strategy for rational patient selection. EXPERIMENTAL DESIGN: The selectivity and cellular activity of capmatinib were assessed in large cellular screening panels. Antitumor efficacy was quantified in a large set of cell line- or patient-derived xenograft models, testing single-agent or combination treatment depending on the genomic profile of the respective models. RESULTS: Capmatinib was found to be highly selective for MET over other kinases. It was active against cancer models that are characterized by MET amplification, marked MET overexpression, MET exon 14 skipping mutations, or MET activation via expression of the ligand hepatocyte growth factor (HGF). In cancer models where MET is the dominant oncogenic driver, anticancer activity could be further enhanced by combination treatments, for example, by the addition of apoptosis-inducing BH3 mimetics. The combinations of capmatinib and other kinase inhibitors resulted in enhanced anticancer activity against models where MET activation co-occurred with other oncogenic drivers, for example EGFR activating mutations. CONCLUSIONS: Activity of capmatinib in preclinical models is associated with a small number of plausible genomic features. The low fraction of cancer models that respond to capmatinib as a single agent suggests that the implementation of patient selection strategies based on these biomarkers is critical for clinical development. Capmatinib is also a rational combination partner for other kinase inhibitors to combat MET-driven resistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Evaluation, Preclinical/methods , Imidazoles/pharmacology , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/metabolism , Triazines/pharmacology , Animals , Benzamides , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Enzyme Activation/drug effects , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/genetics , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Xenograft Model Antitumor Assays
7.
Biochem Biophys Res Commun ; 508(1): 109-116, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30527810

ABSTRACT

Recent studies have highlighted that cancer cells with a loss of the SWI/SNF complex catalytic subunit BRG1 are dependent on the remaining ATPase, BRM, making it an attractive target for cancer therapy. However, an understanding of the extent of target inhibition required to arrest cell growth, necessary to develop an appropriate therapeutic strategy, remains unknown. Here, we utilize tunable depletion of endogenous BRM using the SMASh degron, and interestingly observe that BRG1-mutant lung cancer cells require near complete depletion of BRM to robustly inhibit growth both in vitro and in vivo. Therefore, to identify pathways that synergize with partial BRM depletion and afford a deeper response, we performed a genome-wide CRISPR screen and discovered a combinatorial effect between BRM depletion and the knockout of various genes of the oxidative phosphorylation pathway and the anti-apoptotic gene MCL1. Together these studies provide an important framework to elucidate the requirements of BRM inhibition in the BRG1-mutant state with implications on the feasibility of targeting BRM alone, as well as reveal novel insights into pathways that can be exploited in combination toward deeper anti-tumor responses.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , DNA Helicases/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Nuclear Proteins/genetics , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Animals , Antineoplastic Agents/administration & dosage , CRISPR-Cas Systems , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , DNA Helicases/metabolism , Female , Gene Knockout Techniques , Humans , Isoquinolines/administration & dosage , Lung Neoplasms/metabolism , Mice , Mice, Nude , Mutation , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Nuclear Proteins/metabolism , Oxidative Phosphorylation/drug effects , Proteolysis , Sulfonamides/administration & dosage , Transcription Factors/metabolism , Xenograft Model Antitumor Assays
8.
J Med Chem ; 61(22): 10155-10172, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30339381

ABSTRACT

SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily A member 2 (SMARCA2), also known as Brahma homologue (BRM), is a Snf2-family DNA-dependent ATPase. BRM and its close homologue Brahma-related gene 1 (BRG1), also known as SMARCA4, are mutually exclusive ATPases of the large ATP-dependent SWI/SNF chromatin-remodeling complexes involved in transcriptional regulation of gene expression. No small molecules have been reported that modulate SWI/SNF chromatin-remodeling activity via inhibition of its ATPase activity, an important goal given the well-established dependence of BRG1-deficient cancers on BRM. Here, we describe allosteric dual BRM and BRG1 inhibitors that downregulate BRM-dependent gene expression and show antiproliferative activity in a BRG1-mutant-lung-tumor xenograft model upon oral administration. These compounds represent useful tools for understanding the functions of BRM in BRG1-loss-of-function settings and should enable probing the role of SWI/SNF functions more broadly in different cancer contexts and those of other diseases.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , DNA Helicases/genetics , Drug Design , Mutation , Nuclear Proteins/genetics , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Mice , Models, Molecular , Protein Conformation , Structure-Activity Relationship , Transcription Factors/chemistry , Xenograft Model Antitumor Assays
9.
Nat Med ; 22(3): 262-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26828195

ABSTRACT

Although mechanisms of acquired resistance of epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancers to EGFR inhibitors have been identified, little is known about how resistant clones evolve during drug therapy. Here we observe that acquired resistance caused by the EGFR(T790M) gatekeeper mutation can occur either by selection of pre-existing EGFR(T790M)-positive clones or via genetic evolution of initially EGFR(T790M)-negative drug-tolerant cells. The path to resistance impacts the biology of the resistant clone, as those that evolved from drug-tolerant cells had a diminished apoptotic response to third-generation EGFR inhibitors that target EGFR(T790M); treatment with navitoclax, an inhibitor of the anti-apoptotic factors BCL-xL and BCL-2 restored sensitivity. We corroborated these findings using cultures derived directly from EGFR inhibitor-resistant patient tumors. These findings provide evidence that clinically relevant drug-resistant cancer cells can both pre-exist and evolve from drug-tolerant cells, and they point to therapeutic opportunities to prevent or overcome resistance in the clinic.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic/drug effects , Lung Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , RNA, Messenger/drug effects , Apoptosis/drug effects , Apoptosis/genetics , Blotting, Western , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , Gefitinib , Humans , In Vitro Techniques , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Mutation , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction
10.
Sci Rep ; 5: 11133, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26099953

ABSTRACT

Membrane receptor-sensed input signals affect and modulate intracellular protein-protein interactions (PPIs). Consequent changes occur to the compositions of protein complexes, protein localization and intermolecular binding affinities. Alterations of compartmentalized PPIs emanating from certain deregulated kinases are implicated in the manifestation of diseases such as cancer. Here we describe the application of a genetically encoded Protein-fragment Complementation Assay (PCA) based on the Renilla Luciferase (Rluc) enzyme to compare binary PPIs of the spatially and temporally controlled protein kinase A (PKA) network in diverse eukaryotic model systems. The simplicity and sensitivity of this cell-based reporter allows for real-time recordings of mutually exclusive PPIs of PKA upon activation of selected endogenous G protein-coupled receptors (GPCRs) in cancer cells, xenografts of mice, budding yeast, and zebrafish embryos. This extends the application spectrum of Rluc PCA for the quantification of PPI-based receptor-effector relationships in physiological and pathological model systems.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Protein Interaction Mapping , Receptors, G-Protein-Coupled/metabolism , Animals , Biosensing Techniques , Cell Line, Tumor , Embryo, Nonmammalian/metabolism , Genes, Reporter , HEK293 Cells , Humans , Mice , Osteosarcoma/metabolism , Protein Binding , Saccharomyces cerevisiae/metabolism , Xenograft Model Antitumor Assays , Zebrafish/embryology , Zebrafish/metabolism
11.
Nat Med ; 21(5): 440-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25849130

ABSTRACT

Resistance to cancer therapies presents a significant clinical challenge. Recent studies have revealed intratumoral heterogeneity as a source of therapeutic resistance. However, it is unclear whether resistance is driven predominantly by pre-existing or de novo alterations, in part because of the resolution limits of next-generation sequencing. To address this, we developed a high-complexity barcode library, ClonTracer, which enables the high-resolution tracking of more than 1 million cancer cells under drug treatment. In two clinically relevant models, ClonTracer studies showed that the majority of resistant clones were part of small, pre-existing subpopulations that selectively escaped under therapeutic challenge. Moreover, the ClonTracer approach enabled quantitative assessment of the ability of combination treatments to suppress resistant clones. These findings suggest that resistant clones are present before treatment, which would make up-front therapeutic combinations that target non-overlapping resistance a preferred approach. Thus, ClonTracer barcoding may be a valuable tool for optimizing therapeutic regimens with the goal of curative combination therapies for cancer.


Subject(s)
DNA Barcoding, Taxonomic/methods , Neoplasms/drug therapy , Neoplasms/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell Differentiation , Cell Line, Tumor , Crizotinib , DNA/chemistry , DNA, Complementary/metabolism , Epithelial-Mesenchymal Transition , Erlotinib Hydrochloride , Fusion Proteins, bcr-abl/genetics , Gene Dosage , Gene Library , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Models, Theoretical , Oligonucleotides/genetics , Polymerase Chain Reaction , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Pyrazoles/administration & dosage , Pyridines/administration & dosage , Quinazolines/administration & dosage , Sequence Analysis, RNA
12.
Nat Med ; 20(1): 87-92, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24362935

ABSTRACT

Mantle cell lymphoma (MCL) is an aggressive malignancy that is characterized by poor prognosis. Large-scale pharmacological profiling across more than 100 hematological cell line models identified a subset of MCL cell lines that are highly sensitive to the B cell receptor (BCR) signaling inhibitors ibrutinib and sotrastaurin. Sensitive MCL models exhibited chronic activation of the BCR-driven classical nuclear factor-κB (NF-κB) pathway, whereas insensitive cell lines displayed activation of the alternative NF-κB pathway. Transcriptome sequencing revealed genetic lesions in alternative NF-κB pathway signaling components in ibrutinib-insensitive cell lines, and sequencing of 165 samples from patients with MCL identified recurrent mutations in TRAF2 or BIRC3 in 15% of these individuals. Although they are associated with insensitivity to ibrutinib, lesions in the alternative NF-κB pathway conferred dependence on the protein kinase NIK (also called mitogen-activated protein 3 kinase 14 or MAP3K14) both in vitro and in vivo. Thus, NIK is a new therapeutic target for MCL treatment, particularly for lymphomas that are refractory to BCR pathway inhibitors. Our findings reveal a pattern of mutually exclusive activation of the BCR-NF-κB or NIK-NF-κB pathways in MCL and provide critical insights into patient stratification strategies for NF-κB pathway-targeted agents.


Subject(s)
Lymphoma, Mantle-Cell/drug therapy , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , Pyrroles/pharmacology , Quinazolines/pharmacology , Receptors, Antigen, B-Cell/metabolism , Signal Transduction/drug effects , Adenine/analogs & derivatives , Baculoviral IAP Repeat-Containing 3 Protein , Base Sequence , Blotting, Western , CARD Signaling Adaptor Proteins/metabolism , Cell Line , Cell Survival , DNA Primers/genetics , Guanylate Cyclase/metabolism , Humans , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Luminescent Measurements , Microarray Analysis , Molecular Sequence Data , Piperidines , Protein Serine-Threonine Kinases/genetics , Pyrazoles/pharmacology , Pyrimidines/pharmacology , RNA Interference , Real-Time Polymerase Chain Reaction , Receptors, Antigen, B-Cell/antagonists & inhibitors , Sequence Analysis, RNA , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , TNF Receptor-Associated Factor 3/metabolism , Trypan Blue , Ubiquitin-Protein Ligases , NF-kappaB-Inducing Kinase
13.
Nat Genet ; 45(11): 1386-91, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24076604

ABSTRACT

Epigenetic dysregulation is an emerging hallmark of cancers. We developed a high-information-content mass spectrometry approach to profile global histone modifications in human cancers. When applied to 115 lines from the Cancer Cell Line Encyclopedia, this approach identified distinct molecular chromatin signatures. One signature was characterized by increased histone 3 lysine 36 (H3K36) dimethylation, exhibited by several lines harboring translocations in NSD2, which encodes a methyltransferase. A previously unknown NSD2 p.Glu1099Lys (p.E1099K) variant was identified in nontranslocated acute lymphoblastic leukemia (ALL) cell lines sharing this signature. Ectopic expression of the variant induced a chromatin signature characteristic of NSD2 hyperactivation and promoted transformation. NSD2 knockdown selectively inhibited the proliferation of NSD2-mutant lines and impaired the in vivo growth of an NSD2-mutant ALL xenograft. Sequencing analysis of >1,000 pediatric cancer genomes identified the NSD2 p.E1099K alteration in 14% of t(12;21) ETV6-RUNX1-containing ALLs. These findings identify NSD2 as a potential therapeutic target for pediatric ALL and provide a general framework for the functional annotation of cancer epigenomes.


Subject(s)
Chromatin/genetics , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Repressor Proteins/genetics , Animals , Base Sequence , Cell Line, Tumor , Child , Female , Genetic Predisposition to Disease , Genetic Variation , Humans , Mice , Mice, SCID , NIH 3T3 Cells , Neoplasm Transplantation , Sequence Analysis, DNA , Xenograft Model Antitumor Assays
14.
Int J Biochem Cell Biol ; 44(5): 684-9, 2012 May.
Article in English | MEDLINE | ID: mdl-22349219

ABSTRACT

Molecular-genetic imaging of cancer is in its infancy. Over the past decade gene reporter systems have been optimized in preclinical models and some have found their way into the clinic. The search is on to find the best combination of gene delivery vehicle and reporter imaging system that can be translated safely and quickly. The goal is to have a combination that can detect a wide variety of cancers with high sensitivity and specificity in a way that rivals the current clinical standard, positron emission tomography with [(18)F]fluorodeoxyglucose. To do so will require systemic delivery of reporter genes for the detection of micrometastases, and a nontoxic vector, whether viral or based on nanotechnology, to gain widespread acceptance by the oncology community. Merger of molecular-genetic imaging with gene therapy, a strategy that has been employed in the past, will likely be necessary for such imaging to reach widespread clinical use.


Subject(s)
Diagnostic Imaging/methods , Genetic Therapy/methods , Neoplasm Micrometastasis/diagnosis , Neoplasms/diagnosis , Fluorodeoxyglucose F18 , Gene Transfer Techniques , Genes, Reporter , Humans , Neoplasm Micrometastasis/genetics , Neoplasms/genetics , Neoplasms/therapy , Organ Specificity , Positron-Emission Tomography , Promoter Regions, Genetic , Sensitivity and Specificity , Transcription, Genetic
16.
Nat Med ; 17(1): 123-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21151140

ABSTRACT

Molecular-genetic imaging is advancing from a valuable preclinical tool to a guide for patient management. The strategy involves pairing an imaging reporter gene with a complementary imaging agent in a system that can be used to measure gene expression or protein interaction or track gene-tagged cells in vivo. Tissue-specific promoters can be used to delineate gene expression in certain tissues, particularly when coupled with an appropriate amplification mechanism. Here we show that the progression elevated gene-3 (PEG-3) promoter, derived from a rodent gene mediating tumor progression and metastatic phenotypes, can be used to drive imaging reporters selectively to enable detection of micrometastatic disease in mouse models of human melanoma and breast cancer using bioluminescence and radionuclide-based molecular imaging techniques. Because of its strong promoter activity, tumor specificity and capacity for clinical translation, PEG-3 promoter-driven gene expression may represent a practical, new system for facilitating cancer imaging and therapy.


Subject(s)
Molecular Biology/methods , Molecular Imaging/methods , Neoplasms/genetics , Animals , Disease Models, Animal , Gene Expression Regulation , Genes, Reporter , Humans , Luciferases/genetics , Melanoma/pathology , Mice , Neoplasm Metastasis/genetics , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/genetics
17.
J Natl Cancer Inst ; 102(24): 1855-73, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21088277

ABSTRACT

BACKGROUND: Angiogenesis plays an important role in tumor growth and metastasis; therefore, inhibition of angiogenesis is a promising strategy for developing new anticancer drugs. Type 2 methionine aminopeptidase (MetAP2) protein is likely a molecular target of angiogenesis inhibitors. METHODS: Nitroxoline, an antibiotic used to treat urinary tract infections, was identified from a high-throughput screen of a library of 175,000 compounds for MetAP2 inhibitors and from a parallel screen using the Johns Hopkins Drug Library to identify currently used clinical drugs that can also inhibit human umbilical vein endothelial cells (HUVEC) proliferation. To investigate the mechanism of action of nitroxoline, inhibition of MetAP2 activity and induction of senescence were assessed in HUVEC. To test the antiangiogenic activity of nitroxoline, endothelial tube formation in Matrigel and microvessel formation in Matrigel plugs in vivo were assessed. Antitumor efficacy of nitroxoline was evaluated in mouse models of human breast cancer xenograft (n = 10) and bladder cancer orthotopic xenograft (n = 11). Furthermore, the mechanism of action of nitroxoline was investigated in vivo. RESULTS: Nitroxoline inhibited MetAP2 activity in vitro (half maximal inhibitory concentration [IC(50)] = 54.8 nM, 95% confidence interval [CI] = 22.6 to 132.8 nM) and HUVEC proliferation (IC(50) = 1.9 µM, 95% CI = 1.54 to 2.39 µM). Nitroxoline inhibited MetAP2 activity in HUVEC in a dose-dependent manner and induced premature senescence in a biphasic manner. Nitroxoline inhibited endothelial tube formation in Matrigel and reduced microvessel density in vivo. Mice (five per group) treated with nitroxoline showed a 60% reduction in tumor volume in breast cancer xenografts (tumor volume on day 30, vehicle vs nitroxoline, mean = 215.4 vs 86.5 mm(3), difference = 128.9 mm(3), 95% CI = 32.9 to 225.0 mm(3), P = .012) and statistically significantly inhibited growth of bladder cancer in an orthotopic mouse model (tumor bioluminescence intensities of vehicle [n = 5] vs nitroxoline [n = 6], P = .045). CONCLUSION: Nitroxoline shows promise as a potential therapeutic antiangiogenic agent.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Angiogenesis Inhibitors/pharmacology , Breast Neoplasms/blood supply , Breast Neoplasms/drug therapy , Glycoproteins/antagonists & inhibitors , Neovascularization, Pathologic/prevention & control , Nitroquinolines/pharmacology , Sirtuin 1/antagonists & inhibitors , Urinary Bladder Neoplasms/blood supply , Urinary Bladder Neoplasms/drug therapy , Acetylation/drug effects , Aminopeptidases/metabolism , Animals , Anti-Infective Agents, Urinary/pharmacology , Cell Proliferation/drug effects , Collagen , Cyclohexanes/pharmacology , Disease Models, Animal , Drug Combinations , Drug Synergism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Female , Glycoproteins/metabolism , Humans , Immunoblotting , Immunohistochemistry , Laminin , Methionyl Aminopeptidases , Mice , Mice, Nude , O-(Chloroacetylcarbamoyl)fumagillol , Proteoglycans , RNA, Small Interfering , Recombinant Proteins , Reverse Transcriptase Polymerase Chain Reaction , Sesquiterpenes/pharmacology , Sirtuin 1/metabolism , Transfection , Umbilical Veins/metabolism , Umbilical Veins/pathology , Xenograft Model Antitumor Assays
18.
Bioorg Med Chem Lett ; 20(1): 392-7, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19897367

ABSTRACT

We report a strategy based on bioisosterism to improve the physicochemical properties of existing hydrophilic, urea-based GCPII inhibitors. Comprehensive structure-activity relationship studies of the P1' site of ZJ-43- and DCIBzL-based compounds identified several glutamate-free inhibitors with K(i) values below 20nM. Among them, compound 32d (K(i)=11nM) exhibited selective uptake in GCPII-expressing tumors by SPECT-CT imaging in mice. A novel conformational change of amino acids in the S1' pharmacophore pocket was observed in the X-ray crystal structure of GCPII complexed with 32d.


Subject(s)
Glutamate Carboxypeptidase II/antagonists & inhibitors , Lysine/analogs & derivatives , Radiopharmaceuticals/chemistry , Urea/analogs & derivatives , Animals , Binding Sites , Crystallography, X-Ray , Glutamate Carboxypeptidase II/metabolism , Lysine/chemical synthesis , Lysine/chemistry , Lysine/pharmacology , Mice , Radiopharmaceuticals/chemical synthesis , Structure-Activity Relationship , Tomography, Emission-Computed, Single-Photon , Urea/chemical synthesis , Urea/chemistry , Urea/pharmacology
19.
Cancer Res ; 67(19): 9389-97, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-17909048

ABSTRACT

Bioluminescence imaging (BLI) is becoming indispensable to the study of transgene expression during development and, in many in vivo models of disease such as cancer, for high throughput drug screening in vitro. Because reaction of d-luciferin with firefly luciferase (fLuc) produces photons of sufficiently long wavelength to permit imaging in intact animals, use of this substrate and enzyme pair has become the method of choice for performing BLI in vivo. We now show that expression of the ATP-binding cassette (ABC) family transporter ABCG2/BCRP affects BLI signal output from the substrate d-luciferin. In vitro studies show that d-luciferin is a substrate for ABCG2/BCRP but not for the MDR1 P-glycoprotein (ABCB1/Pgp), multidrug resistance protein 1 (MRP1/ABCC1), or multidrug resistance protein 2 (MRP2/ABCC2). d-Luciferin uptake within cells is shown to be modulated by ABC transporter inhibitors, including the potent and selective ABCG2/BCRP inhibitor fumitremorgin C. Images of xenografts engineered to express transgenic ABCG2/BCRP, as well as xenografts derived from the human prostate cancer cell line 22Rv1 that naturally express ABCG2/BCRP, show that ABCG2/BCRP expression and function within regions of interest substantially influence d-luciferin-dependent bioluminescent output in vivo. These findings highlight the need to consider ABCG2/BCRP effects during d-luciferin-based BLI and suggest novel high throughput methods for identifying new ABCG2/BCRP inhibitors.


Subject(s)
ATP-Binding Cassette Transporters/biosynthesis , Firefly Luciferin/metabolism , Neoplasm Proteins/biosynthesis , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Animals , Cell Line, Tumor , Dogs , Female , Firefly Luciferin/analysis , Humans , Luciferases, Firefly/metabolism , Luminescent Agents/analysis , Luminescent Agents/metabolism , Luminescent Measurements , Male , Mice , Mice, Nude , Multidrug Resistance-Associated Protein 2 , Prostatic Neoplasms/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...