Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(9)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062935

ABSTRACT

Herein, we formulated a new O3-type layered Na0.80[Fe0.40Co0.40Ti0.20]O2 (NFCTO) cathode material for sodium-ion batteries (SIBs) using a double-substitution concept of Co in the parent NaFe0.5Co0.5O2, having the general formula Na1-x[Fe0.5-x/2Co0.5-x/2M4+x]O2 (M4+ = tetravalent ions). The NFCTO electrode delivers a first discharge capacity of 108 mAhg-1 with 80% discharge capacity retention after 50 cycles. Notably, the first charge-discharge profile shows asymmetric yet reversible redox reactions. Such asymmetric redox reactions and electrochemical properties of the NFCTO electrode were correlated with the phase transition behavior and charge compensation reaction using synchrotron-based in situ XRD and ex situ X-ray absorption spectroscopy. This study provides an exciting opportunity to explore the interplay between the rich chemistry of Na1-x[Fe0.5-x/2Co0.5-x/2M4+x]O2 and sodium storage properties, which may lead to the development of new cathode materials for SIBs.

2.
Int J Biol Macromol ; 63: 218-24, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24286937

ABSTRACT

We describe herein a simple and effective strategy for immobilization of bile salt hydrolase enzyme by grafting glutaraldehyde groups inside channels of APTES functionalized SBA-15. The increase in glutaraldehyde concentration prevents leakage of enzyme but showed a steep decrease in enzyme activity in the immobilized matrix. So the degree of cross-linking should be the minimum possible to ensure sufficient stability without loss of activity. Cross-linking carried out with 0.1% glutaraldehyde concentration showed the highest activity, so this was used in all further experiments. Physico-chemical characterizations of the immobilized enzyme were carried out by XRD, N2 adsorption, TEM, FTIR and (29)Si CP-MAS NMR techniques. Immobilized BSH exhibits enhanced stability over a wide pH (3-11) and temperature range (40-80 °C) and retains an activity even after recycling experiments and six months of storage. From our in vivo research experiment toward co-precipitation of cholesterol, we have shown that immobilized BSH enzyme may be the promising catalyst for the reduction of serum cholesterol levels in our preliminary investigation. Enhancement in pH stability at the extreme side of pH may favor the use of immobilized BSH enzyme for drug delivery purpose to with stand extreme pH conditions in the gastrointestinal conditions.


Subject(s)
Amidohydrolases/chemistry , Cholesterol/chemistry , Enzymes, Immobilized/chemistry , Adsorption , Amidohydrolases/metabolism , Catalysis , Drug Delivery Systems , Enzymes, Immobilized/metabolism , Glutaral/chemistry , Humans , Hydrogen-Ion Concentration , Protein Stability , Silicon Dioxide/chemistry , Temperature
3.
Dalton Trans ; 40(41): 10936-44, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21909567

ABSTRACT

Benzyl alcohol has been used to prepare a single phase MgCl(2).6BzOH molecular adduct as a support for an ethylene polymerization catalyst (Ziegler catalyst). The structural, spectroscopic and morphological aspects of the MgCl(2).6BzOH molecular adduct and the Ziegler catalyst have been thoroughly studied by various physicochemical characterization techniques. The presence of MgO(6) octahedrons due to the interaction of Mg(2+) with six -OH groups of the benzyl alcohol is confirmed from a Raman feature at 703 cm(-1), and structural studies. The supported catalyst activity has been evaluated for the ethylene polymerization reaction. The lower polymerization activity of the titanated Ziegler-Natta catalyst compared with a standard catalyst is attributed to the strong interaction of titanium chloride with the support and associated electronic factors.

4.
J Am Chem Soc ; 133(27): 10587-98, 2011 Jul 13.
Article in English | MEDLINE | ID: mdl-21634788

ABSTRACT

Three gallosilicate natrolites with closely similar chemical composition but differing in the distribution of Si and Ga over crystallographically different tetrahedral sites (T-sites) show striking differences in their cation exchange performance. The ability to exchange Na(+) by the larger alkali metal cations decreases upon increasing the size of the cation, as expected, but also with the degree of T-atom ordering. To seek an insight into this phenomenon, the crystal structures of 11 different zeolites, which show variations in degree of T-atom ordering, nature of countercation, and hydration state, have been refined using synchrotron diffraction data. While the three as-made sodium materials were characterized to have a low, medium, and high degree of ordering, respectively, their pore sizes are close to the size of the bare Na(+) cation and much smaller than that of the larger alkali cations, which are nonetheless exchanged into the materials, each one at a different level. Interestingly, large differences are also manifested when the Na(+) back-exchange is performed on the dehydrated K(+) forms, with crystallographic pore sizes too small even to allow the passage of Na(+). Although the thermodynamic data point to small differences in the enthalpy of the Na(+)/K(+) exchange in the three materials, comparison of the "static" crystallographic pore sizes and the diameter of the exchanged cations lead us to conclude that during the exchange process these zeolites undergo significant deformations that dynamically open the pores, allowing cation traffic even for Cs(+) in the case of the most disordered material. In addition to the very large topological flexibility typical of the natrolite framework, we propose as a hypothesis that there is an additional flexibility mechanism that decreases the rigidity of the natrolite chain itself and is dependent on preferential siting of Si or Ga on crystallographically different T-sites.

SELECTION OF CITATIONS
SEARCH DETAIL
...