Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci Technol ; 57(3): 1119-1130, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32123433

ABSTRACT

The current study evaluated the key characters of aroma composition in diversified red wines (Cinsaut, Grenache, Cabernet Franc, Petit Verdot, Cabernet Sauvignon, Nielluccio, Tempranillo, Syrah, Merlot and Caladoc). Out of hundreds of volatile compounds 64 compounds were considered for study. Different groups consisting of fatty acids, volatile alcohols, aldehydes, esters, volatile phenols and terpenes were analysed using gas chromatography mass spectrometry coupled with thermal desorption (TD-GC-MS). Among all these diversified classes, alcohols were found as the most dominant group followed by esters and acids whereas aldehydes, phenols and terpenes were found to be minor compounds. Among the varieties, Nielluccio wine recorded highest concentration of total volatile compounds (191.53 mg/L) while, it was least in Caladoc wines (15.45 mg/L). The principal component analysis clearly differentiated Grenache wines based on their relationships between scores and their aroma composition followed by Nielluccio and Cinsuat wines. Out of sixty four compounds, only six aromatic compounds viz. butanediol, isoamyl actate, γ-Terpene, butanol, acetic acid and furfural have satisfying aroma descriptors with floral and fruity nuances and contribute to differentiate the Grenache wines from other varieties which have similar scores in PC1 analysis. The cluster analysis also suggested that the wines in the same group (Cinsaut, Tempranillo and Syrah), (Cabernet Franc, Cabernet Sauvignon, Caladoc and Merlot) and (Nielluccio and Petit Verdot) had similar aroma characterization. Grenache wines were well differentiated from the sub group formed by other red varieties.

2.
J Food Sci Technol ; 55(12): 4994-5002, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30482995

ABSTRACT

Grapes are well known for their high content of phenolic compounds. Polyphenols are classified into flavonoids and non-flavonoids by their primary chemical structures of hydroxybenzene. Flavonoids mainly consist of anthocyanins, flavonoids, and flavonols whereas non-flavonoids include hydroxycinnamic and hydroxybenzoic acids. In the present study, sixteen phenolic compounds from ten red and nine white grape wine varieties were quantified using high-performance liquid chromatography. Gallic acid, Vanillic acid, Rutin hydrate, Ellagic acid, Chlorogenic acid, Sorbic acid, Catechin hydrate, Epicatechin, p-coumaric acid, Quercetin, Myricetin, Kaempferol, Piceatannol, and Resveratrol were major compounds found in red wine grapes. Among the varieties, Petit Verdot, Cabernet Franc showed maximum quantitative phenolics, whereas Cabernet Sauvignon, Niellucio, Cinsaut, and Syrah showed least quantitative phenolics in grape berries. Phenolic profile of white wine grapes showed lower concentration of phenolics than that of red wine grapes. The variety Gros Meseng showed maximum phenolics followed by Sauvignon, while the variety Colombard and Chenin Blanc showed least phenolics.

SELECTION OF CITATIONS
SEARCH DETAIL
...