Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 32(9): 1379-95, 2014.
Article in English | MEDLINE | ID: mdl-23876154

ABSTRACT

In our recent studies on prevalence of multidrug resistant pathogens in Byramangala reservoir, Karnataka, India, we identified Salmonella typhi, Staphylococcus aureus, and Vibrio cholerae which had acquired multiple drug resistance (MDR) and emerged as superbugs. Hence, there is a pressing demand to identify alternative therapeutic remedies. Our study focused on the screening of herbal leads by structure-based virtual screening. The virulent gene products of these pathogens towards Kanamycin(aph), Trimethoprim(dfrA1), Methicillin (mecI), and Vancomycin (vanH) were identified as the probable drug targets and their 3D structures were predicted by homology modeling. The predicted models showed good stereochemical validity. By extensive literature survey, we selected 58 phytoligands and their drug likeliness and pharmacokinetic properties were computationally predicted. The inhibitory properties of these ligands against drug targets were studied by molecular docking. Our studies revealed that Baicalein from S. baicalensis (baikal skullcap) and Luteolin from Taraxacum officinale (dandelion) were identified as potential inhibitors against aph of S. typhi. Resveratrol from Vitis vinifera (grape vine) and Wogonin from S. baicalensis were identified as potential inhibitors against dfrA1 of S. typhi. Herniarin from Herniaria glabra (rupture worts) and Pyrocide from Daucus carota (Carrot) were identified as the best leads against dfrA1 of V. cholerae. Taraxacin of T. officinale (weber) and Luteolin were identified as potential inhibitors against Mec1. Apigenin from Coffee arabica (coffee) and Luteolin were identified as the best leads against vanH of S. aureus. Our findings pave crucial insights for exploring alternative therapeutics against MDR pathogens.


Subject(s)
Anti-Bacterial Agents/chemistry , Drug Resistance, Multiple, Bacterial/genetics , Phytochemicals/chemistry , Salmonella typhi/genetics , Staphylococcus aureus/genetics , Vibrio cholerae/genetics , Virulence Factors/chemistry , Computer Simulation , Ligands , Models, Molecular , Salmonella typhi/pathogenicity , Staphylococcus aureus/pathogenicity , Vibrio cholerae/pathogenicity , Virulence Factors/genetics
2.
Interdiscip Sci ; 4(4): 273-81, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23354816

ABSTRACT

Though tetanus is an old disease with well known medicines, its complications are still a serious issue worldwide. Tetanus is mainly due to a powerful neurotoxin, tetanolysin-O, produced by a Gram positive anaerobic bacterium, Clostridium tetani. The toxin has a thiol-activated cytolysin which causes lysis of human platelets, lysosomes and a variety of subcellular membranes. The existing therapy seems to have challenged as available vaccines are not so effective and the bacteria developed resistance to many drugs. Computer aided approach is a novel platform to screen drug targets and design potential inhibitors. The three dimensional structure of the toxin is essential for structure based drug design. But the structure of tetanolysin-O is not available in its native form. Moreover, the interaction and pharmacological activities of current drugs against tetanolysin-O is not clear. Hence, there is need for three dimensional model of the toxin. The model was generated by homology modeling using crystal structure of perfringolysin-O, chain-A (PDB ID: 1PFO) as the template. The modeled structure has 22.7% α helices, 27.51% ß sheets and 41.75% random coils. A thiol-activated cytolysin was predicted in the region of 105 to 1579, which acts as a functional domain of the toxin. The hypothetical model showed the backbone root mean square deviation (RMSD) value of 0.6 Å and the model was validated by ProCheck. The Ramachandran plot of the model accounts for 92.3% residues in the most allowed region. The model was further refined by various tools and deposited to Protein Model Database (PMDB ID: PM0077550). The model was used as the drug target and the interaction of various lead molecules with protein was studied by molecular docking. We have selected phytoligands based on literatures and pharmacophoric studies. The efficiency of herbal compounds and chemical leads was compared. Our study concluded that herbal derivatives such as berberine (7, 8, 13, 13a-tetradehydro-9,10-dimethoxy-2,3 [methylenebis(oxy)] berbinium), curcumin ((1E,6E)-1,7-bis (4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), coumarin (2H-chromen-2-one), catechol (Benzene-1,2-diol) and diosphenol (2-hydroxy-3-methyl-6-propan-2-ylcyclohex-2-en-1-one) are the best inhibitors compared to known chemicals. Hence, these leads can be used as potential inhibitors against tetanolysin.


Subject(s)
Clostridium tetani , Drug Design , Phytotherapy , Plant Extracts/pharmacology , Tetanus Toxin , Tetanus/drug therapy , Bacterial Toxins/chemistry , Clostridium tetani/chemistry , Clostridium tetani/pathogenicity , Computer Simulation , Hemolysin Proteins/chemistry , Humans , Ligands , Models, Molecular , Perforin/chemistry , Plant Extracts/therapeutic use , Protein Structure, Secondary , Sulfhydryl Compounds/metabolism , Tetanus/microbiology , Tetanus Toxin/antagonists & inhibitors , Tetanus Toxin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...