Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Pers Med ; 12(10)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36294787

ABSTRACT

Styrene-co-maleic acid (SMA) copolymer was evaluated as a polymer platform to conjugate with two fluorescent dyes, i.e., 6-aminofluorescein (AF) and Rhodamine (Rho); which spontaneously self-assembles in an aqueous medium and forms a micelle through a non-covalent interaction. These SMA-dye conjugates showed the nanosized micelle formation through dynamic light scattering (DLS) with discrete distributions having mean particle sizes of 135.3 nm, and 190.9 nm for SMA-AF, and SMA-Rho, respectively. The apparent molecular weight of the micelle was evaluated using Sephadex G-100 gel chromatography and it was found that the 49.3 kDa, and 28.7 kDa for SMA-AF, and SMA-Rho, respectively. Moreover, the biodistribution study showed the selective accumulation of the SMA-dye conjugates in the tumor of mice. Taken together, the SMA-dye conjugated micelles appear in high concentrations in the tumor by utilizing the enhanced permeability and retention (EPR) effect of the tumor-targeted delivery. These results indicate that SMA-dye conjugates have the advanced potential as macromolecular fluorescent probes for microtumor imaging by means of a photodynamic diagnosis.

2.
J Control Release ; 223: 188-196, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26739550

ABSTRACT

Xanthine oxidase (XO) is one of the major enzymes to generate superoxide anion (O2(-)), that is frequently associated with various diseases involving reactive oxygen species (ROS). 4-Amino-6-hydroxypyrazolo[3,4-d]pyrimidine (AHPP) is a potent XO inhibitor showing therapeutic potential for oxidative inflammatory diseases. However its very poor aqueous solubility makes pharmaceutical application difficult. To overcome this drawback, we have successfully synthesized a water soluble polyethylene glycol (PEG) conjugate of AHPP (PEG-AHPP) that exhibited good water solubility, forming micelles in aqueous solution. In the present study, the in vivo pharmacokinetics of this PEG-AHPP was examined. Further its therapeutic potential was investigated in dextran sulfate sodium (DSS) induced mouse colitis model. Compared to parental AHPP, the plasma t1/2 of PEG-AHPP was increased remarkably from 3h to 14h, indicating macromolecular nature of AHPP in circulation. In the DSS induced colitis model, oral administration of 2% DSS in drinking water resulted in the progression of the colitis with diarrhea and hematochezia as well as shortening of the large bowel. Administration of PEG-AHPP intravenously (10mg/kg) or orally (20mg/kg) suppressed pathogenesis significantly; namely diarrhea was reduced markedly, and the length of large bowel returned to almost normal level. Pathological examination clearly revealed improvement of colonic ulcer or necrosis. Production of inflammatory cytokines, i.e., interleukin-6 and tumor necrosis factor (TNF)-α, was significantly increased in DSS-induced colitis mice. However, it was markedly suppressed by PEG-AHPP administration. Similar results were found when serum 8-hydroxydeoxyguanosine (8-OHdG) and thiobarbituric acid reactive substances (TBARS), that are the index of oxidative injury, were measured. PEG-AHPP thus may be a potential candidate drug for ROS-related diseases including inflammatory bowel disease.


Subject(s)
Colitis/drug therapy , Oxypurinol/analogs & derivatives , Polyethylene Glycols/administration & dosage , Xanthine Oxidase/antagonists & inhibitors , 8-Hydroxy-2'-Deoxyguanosine , Animals , Caco-2 Cells , Colitis/chemically induced , Colitis/immunology , Colitis/metabolism , Colon/drug effects , Colon/immunology , Colon/metabolism , Colon/pathology , Cytokines/immunology , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/blood , Dextran Sulfate , Female , Humans , Mice, Inbred ICR , Micelles , Oxypurinol/administration & dosage , Oxypurinol/pharmacokinetics , Oxypurinol/therapeutic use , Polyethylene Glycols/pharmacokinetics , Polyethylene Glycols/therapeutic use , Reactive Oxygen Species , Solubility , Thiobarbituric Acid Reactive Substances/analysis , Water/chemistry , Xanthine Oxidase/blood , Xanthine Oxidase/metabolism
3.
J Drug Target ; 19(10): 954-66, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22074217

ABSTRACT

Xanthine oxidase (XO) is the major source of superoxide anion (O(2)(-)) that is associated with various reactive oxygen species (ROS) related diseases. 4-amino-6-hydroxypyrazolo[3,4-d]pyrimidine (AHPP) is a potent XO inhibitor discovered in Maeda's laboratory, which is now being developed for the treatment of ischemia reperfusion injury and inflammatory diseases. However, the poor aqueous solubility of AHPP at physiological pH hampers its clinical development. To overcome this drawback, in the present study water soluble polyethyleneglycol conjugated AHPP (AHPP-PEG) was synthesized via two different approaches, which resulted in two derivatives of AHPP-PEG, namely, mono-AHPP-PEG and bis-(AHPP)-PEG depending on the number of AHPP on PEG chain. We characterized both conjugates by UV, FTIR spectroscopy and elemental analysis. Dynamic light scattering and Sephadex G-100 chromatography studies revealed mean particle size of 164.1 and 218.8 nm and Mw. equivalent to 107 and 126 kDa for mono-AHPP-PEG and bis-(AHPP)-PEG, respectively. Further, XO inhibitory activity for mono-AHPP-PEG and bis-(AHPP)-PEG were found with Ki of 0.23±0.03 and 0.21±0.03 µM, respectively. In vivo pharmacokinetic study showed longer circulation time of AHPP-PEG conjugates compared to free AHPP. These results indicate AHPP-PEG conjugates have better potentials with supramolecular assemblies in aqueous medium and may become a good candidate for the treatment of ROS related diseases.


Subject(s)
Drug Carriers/chemistry , Oxypurinol/analogs & derivatives , Polyethylene Glycols/chemistry , Xanthine Oxidase/antagonists & inhibitors , Animals , Male , Mice , Micelles , Oxypurinol/administration & dosage , Oxypurinol/chemistry , Oxypurinol/pharmacology , Particle Size , Solubility , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Water/chemistry
4.
Exp Biol Med (Maywood) ; 235(4): 487-96, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20407081

ABSTRACT

The detrimental role of superoxide anion (O(2)(-)) has been well documented in the pathogenesis of ischemia-reperfusion (I/R) injury. Our and other studies suggested that one critical source of O(2)(-) generation may be xanthine oxidase (XO). We thus hypothesized that I/R injury could be protected by inhibiting XO activity, which would reduce the amount of O(2)(-) and hence reduce pathogenic consequences. Among various XO inhibitors, we previously found 4-amino-6-hydroxypyrazolo[3,4-d]pyrimidine (AHPP) exhibited potent XO inhibitory activity. Here, we report that the covalent conjugate of AHPP with amphipathic styrene-maleic acid copolymer (SMA-AHPP) showed protective effect against I/R-induced injury in a rat hepatic I/R model. Liver ischemia was induced by occluding both the portal vein and the hepatic artery for 30 min, and followed by reperfusion. SMA-AHPP was administered via the tail vein two hours before ischemia was initiated. A remarkable increase of liver enzymes in plasma (aspartate aminotransferase, AST; alanine aminotransferase, ALT and lactate dehydrogenase, LDH) was detected three hours after reperfusion, whereas prior injection of SMA-AHPP greatly suppressed this increase of AST, ALT and LDH. Moreover, induction of inflammatory cytokines, i.e. tumor necrosis factor-alpha (TNF-alpha), interleukin-12 (IL-12) and monocyte chemotactic protein-1 (MCP-1) by I/R were significantly inhibited by SMA-AHPP treatment. Accordingly, cytotoxic effect or apoptosis in the liver caused by I/R was clearly reduced by SMA-AHPP pretreatment. Furthermore, thiobarbituric acid-reactive substance assay showed a significant decrease of lipid peroxidation in rat liver after the administration of SMA-AHPP, which is parallel with the decreased XO activity after SMA-AHPP treatment, indicating the involvement of reactive oxygen species generated by XO. In addition, SMA-AHPP was found to bind to albumin, thus to exhibit prolonged in vivo (plasma) half-life. These results suggest that SMA-AHPP exerted a potent cytoprotective effect against I/R injury in rat liver, by inhibiting XO activity and the subsequent generation of O(2)(-).


Subject(s)
Enzyme Inhibitors/pharmacology , Liver/blood supply , Maleates/pharmacology , Oxypurinol/analogs & derivatives , Polystyrenes/pharmacology , Reperfusion Injury/prevention & control , Xanthine Oxidase/antagonists & inhibitors , Albumins/metabolism , Animals , Apoptosis/drug effects , Cytokines/blood , Enzyme Inhibitors/chemistry , Heme Oxygenase-1/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Maleates/chemistry , Molecular Weight , Oxypurinol/chemistry , Oxypurinol/pharmacology , Polystyrenes/chemistry , Rats , Rats, Wistar , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Superoxides/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Tissue Distribution , Xanthine Oxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...