Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Antibiotics (Basel) ; 11(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36551381

ABSTRACT

Emerging sequence types of pathogenic bacteria have a dual ability to acquire resistance islands/determinants, and remain renitent towards disinfection practices; therefore, they are considered "critical risk factors" that contribute significantly to the global problem of antimicrobial resistance. Multidrug-resistant Escherichia coli was isolated, its genome sequenced, and its susceptibilities characterized, in order to understand the genetic basis of its antimicrobial resistance.The draft genome sequencing of E. coli ECU32, was performed with Illumina NextSeq 500, and annotated using a RAST server. The antibiotic resistome, genomic island, insertion sequences, and prophages were analyzed using bioinformatics tools. Subsequently, analyses including antibiotic susceptibility testing, E-test, bacterial growth, survival, and efflux inhibition assays were performed.The draft genome of E. coli ECU32 was 4.7 Mb in size, the contigs were 107, and the G+C content was 50.8%. The genome comprised 4658 genes, 4543 CDS, 4384 coding genes, 115 RNA genes, 88 tRNAs, and 3 CRISPR arrays. The resistome characterization of ST540 E. coli ECU32 revealed the presence of ESBL, APH(6)-Id, APH(3')-IIa, dfrA14, and QnrS1, with broad-spectrum multidrug and biocide resistance. Comparative genome sequence analysis revealed the presence of transporter and several virulence genes. Efflux activity and growth inhibition assays, which were performed with efflux substrates in the presence of inhibitor PAßN, exhibited significant reduced growth relative to its control.This study discusses the genotypic and phenotypic characterization of the biocide-tolerant multidrug-resistant E. coli O9:H30 strain, highlighting the contributory role of qnrS-dependent plasmid-mediated quinolone resistance, in addition to innate enzymatic modes of multidrug resistance mechanisms.

2.
Front Microbiol ; 12: 738371, 2021.
Article in English | MEDLINE | ID: mdl-35002996

ABSTRACT

Acinetobacter baumannii has emerged as one of the dominant nosocomial human pathogens associated with high morbidity and mortality globally. Increased incidences of carbapenem-resistant A. baumannii (CRAB) have resulted in an enormous socioeconomic burden on health-care systems. Here, we report the genotypic and phenotypic characterization of novel ST1816 and ST128 variants in A. baumannii strains belonging to International clone II (GC2) with capsule types KL1:OCL8 and KL3:OCL1d from India. Sequence analysis revealed the presence of diverse virulome and resistome in these clinical strains, in addition to islands, prophages, and resistance genes. The oxacillinase bla OXA-23 detected in the genomic island also highlighted the coexistence of bla OXA-66 /bla OXA-98 , bla ADC73 /bla ADC-3 , and bla TEM-1D in their mobile scaffolds, which is alarming. Together with these resistance-determining enzymes, multidrug efflux transporters also harbored substitutions, with increased expression in CRAB strains. The hotspot mutations in colistin resistance-conferring operons, PmrAB, LpxACD, and AdeRS, were additionally confirmed. Phenotype microarray analysis indicated that multidrug-resistant strains A. baumannii DR2 and A. baumannii AB067 preferred a range of antimicrobial compounds as their substrates relative to the other. To our knowledge, this is the first comprehensive report on the characterization of A. baumannii variants ST1816 and ST128, with different genetic makeup and genome organization. The occurrence of CRAB infections worldwide is a severe threat to available limited therapeutic options; hence, continued surveillance to monitor the emergence and dissemination of such novel ST variants in A. baumannii is imperative.

SELECTION OF CITATIONS
SEARCH DETAIL