Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(6): e2300644120, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38306481

ABSTRACT

It is unclear how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to the strong but ineffective inflammatory response that characterizes severe Coronavirus disease 2019 (COVID-19), with amplified immune activation in diverse cell types, including cells without angiotensin-converting enzyme 2 receptors necessary for infection. Proteolytic degradation of SARS-CoV-2 virions is a milestone in host viral clearance, but the impact of remnant viral peptide fragments from high viral loads is not known. Here, we examine the inflammatory capacity of fragmented viral components from the perspective of supramolecular self-organization in the infected host environment. Interestingly, a machine learning analysis to SARS-CoV-2 proteome reveals sequence motifs that mimic host antimicrobial peptides (xenoAMPs), especially highly cationic human cathelicidin LL-37 capable of augmenting inflammation. Such xenoAMPs are strongly enriched in SARS-CoV-2 relative to low-pathogenicity coronaviruses. Moreover, xenoAMPs from SARS-CoV-2 but not low-pathogenicity homologs assemble double-stranded RNA (dsRNA) into nanocrystalline complexes with lattice constants commensurate with the steric size of Toll-like receptor (TLR)-3 and therefore capable of multivalent binding. Such complexes amplify cytokine secretion in diverse uninfected cell types in culture (epithelial cells, endothelial cells, keratinocytes, monocytes, and macrophages), similar to cathelicidin's role in rheumatoid arthritis and lupus. The induced transcriptome matches well with the global gene expression pattern in COVID-19, despite using <0.3% of the viral proteome. Delivery of these complexes to uninfected mice boosts plasma interleukin-6 and CXCL1 levels as observed in COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Mice , Endothelial Cells , Proteome , Peptides
3.
Blood Adv ; 7(10): 1945-1953, 2023 05 23.
Article in English | MEDLINE | ID: mdl-36477178

ABSTRACT

The chemotherapeutic drug doxorubicin is cardiotoxic and can cause irreversible heart failure. In addition to being cardiotoxic, doxorubicin also induces the activation of coagulation. We determined the effect of thrombin-mediated activation of protease-activated receptor 1 (PAR1) on doxorubicin-induced cardiac injury. Administration of doxorubicin to mice resulted in a significant increase in plasma prothrombin fragment 1+2, thrombin-antithrombin complexes, and extracellular vesicle tissue factor activity. Doxorubicin-treated mice expressing low levels of tissue factor, but not factor XII-deficient mice, had reduced plasma thrombin-antithrombin complexes compared to controls. To evaluate the role of thrombin-mediated activation of PAR1, transgenic mice insensitive to thrombin (Par1R41Q) or activated protein C (Par1R46Q) were subjected to acute and chronic models of doxorubicin-induced cardiac injury and compared with Par1 wild-type (Par1+/+) and PAR1 deficient (Par1-/-) mice. Par1R41Q and Par1-/- mice, but not Par1R46Q mice, demonstrated similar reductions in the cardiac injury marker cardiac troponin I, preserved cardiac function, and reduced cardiac fibrosis compared to Par1+/+ controls after administration of doxorubicin. Furthermore, inhibition of Gαq signaling downstream of PAR1 with the small molecule inhibitor Q94 significantly preserved cardiac function in Par1+/+ mice, but not in Par1R41Q mice subjected to the acute model of cardiac injury when compared to vehicle controls. In addition, mice with PAR1 deleted in either cardiomyocytes or cardiac fibroblasts demonstrated reduced cardiac injury compared to controls. Taken together, these data suggest that thrombin-mediated activation of PAR1 contributes to doxorubicin-induced cardiac injury.


Subject(s)
Receptor, PAR-1 , Thrombin , Mice , Animals , Receptor, PAR-1/genetics , Receptor, PAR-1/metabolism , Thrombin/metabolism , Thromboplastin , Doxorubicin/adverse effects , Antithrombins
4.
J Thromb Haemost ; 20(2): 422-433, 2022 02.
Article in English | MEDLINE | ID: mdl-34689407

ABSTRACT

BACKGROUND: Protease-activated receptor 4 (PAR4) is expressed by a wide variety of cells, including megakaryocytes/platelets, immune cells, cardiomyocytes, and lung epithelial cells. It is the only functional thrombin receptor on murine platelets. A global deficiency of PAR4 is associated with impaired hemostasis and reduced thrombosis. OBJECTIVE: We aimed to generate a mouse line with a megakaryocyte/platelet-specific deletion of PAR4 (PAR4fl/fl ;PF4Cre+ ) and use the mouse line to investigate the role of platelet PAR4 in hemostasis and thrombosis in mice. METHODS: Platelets from PAR4fl/fl ;PF4Cre+ were characterized in vitro. Arterial and venous thrombosis was analyzed. Hemostatic plug formation was analyzed using a saphenous vein laser injury model in mice with global or megakaryocyte/platelet-specific deletion of PAR4 or wild-type mice treated with thrombin or glycoprotein VI (GPVI) inhibitors. RESULTS: PAR4fl/fl ;PF4Cre+ platelets were unresponsive to thrombin or specific PAR4 stimulation but not to other agonists. PAR4-/- and PAR4fl/fl ;PF4Cre+ mice both exhibited a similar reduction in arterial thrombosis compared to their respective controls. More importantly, we show for the first time that platelet PAR4 is critical for venous thrombosis in mice. In addition, PAR4-/- mice and PAR4fl/fl ;PF4Cre+ mice exhibited a similar impairment in hemostatic plug stability in a saphenous vein laser injury model. Inhibition of thrombin in wild-type mice gave a similar phenotype. Combined PAR4 deficiency on platelets with GPVI inhibition did not impair hemostatic plug formation but further reduced plug stability. CONCLUSION: We generated a novel PAR4fl/fl ;PF4Cre+ mouse line. We used this mouse line to show that PAR4 signaling in platelets is critical for arterial and venous thrombosis and hemostatic plug stability.


Subject(s)
Hemostatics , Thrombosis , Animals , Blood Platelets , Hemostasis , Mice , Platelet Activation/physiology , Platelet Aggregation , Receptors, Thrombin/genetics , Thrombin , Thrombosis/genetics
5.
Front Immunol ; 12: 791017, 2021.
Article in English | MEDLINE | ID: mdl-34925374

ABSTRACT

Background: Innate immune responses to influenza A virus (IAV) infection are initiated in part by toll-like receptor 3 (TLR3). TLR3-dependent signaling induces an antiviral immune response and an NFκB-dependent inflammatory response. Protease-activated receptor 2 (PAR2) inhibits the antiviral response and enhances the inflammatory response. PAR2 deficiency protected mice during IAV infection. However, the PAR2 expressing cell-types contributing to IAV pathology in mice and the mechanism by which PAR2 contributes to IAV infection is unknown. Methods: IAV infection was analyzed in global (Par2-/- ), myeloid (Par2fl/fl;LysMCre+) and lung epithelial cell (EpC) Par2 deficient (Par2fl/fl ;SPCCre+) mice and their respective controls (Par2+/+ and Par2fl/fl). In addition, the effect of PAR2 activation on polyinosinic-polycytidylic acid (poly I:C) activation of TLR3 was analyzed in bone marrow-derived macrophages (BMDM). Lastly, we determined the effect of PAR2 inhibition in wild-type (WT) mice. Results: After IAV infection, Par2-/- and mice with myeloid Par2 deficiency exhibited increased survival compared to infected controls. The improved survival was associated with reduced proinflammatory mediators and reduced cellular infiltration in bronchoalveolar lavage fluid (BALF) of Par2-/- and Par2fl/fl;LysMCre+ 3 days post infection (dpi) compared to infected control mice. Interestingly, Par2fl/fl;SPCCre+ mice showed no survival benefit compared to Par2fl/fl . In vitro studies showed that Par2-/- BMDM produced less IL6 and IL12p40 than Par2+/+ BMDM after poly I:C stimulation. In addition, activation of PAR2 on Par2+/+ BMDM increased poly I:C induction of IL6 and IL12p40 compared to poly I:C stimulation alone. Importantly, PAR2 inhibition prior to IAV infection protect WT mice. Conclusion: Global Par2 or myeloid cell but not lung EpC Par2 deficiency was associated with reduced BALF inflammatory markers and reduced IAV-induced mortality. Our study suggests that PAR2 may be a therapeutic target to reduce IAV pathology.


Subject(s)
Influenza A virus , Orthomyxoviridae Infections/mortality , Receptor, PAR-2/physiology , Animals , Cytokines/analysis , Cytokines/biosynthesis , Female , Interferon-beta/biosynthesis , Lung/pathology , Lung/virology , Male , Mice , Mice, Inbred C57BL , Myeloid Cells/physiology , Neutrophils/immunology , Orthomyxoviridae Infections/immunology , Receptor, PAR-2/deficiency
6.
Sci Rep ; 11(1): 14264, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34253819

ABSTRACT

Protease-activated receptor 1 (PAR1) is widely expressed in humans and mice, and is activated by a variety of proteases, including thrombin. Recently, we showed that PAR1 contributes to the innate immune response to viral infection. Mice with a global deficiency of PAR1 expressed lower levels of CXCL10 and had increased Coxsackievirus B3 (CVB3)-induced myocarditis compared with control mice. In this study, we determined the effect of cell type-specific deletion of PAR1 in cardiac myocytes (CMs) and cardiac fibroblasts (CFs) on CVB3-induced myocarditis. Mice lacking PAR1 in either CMs or CFs exhibited increased CVB3 genomes, inflammatory infiltrates, macrophages and inflammatory mediators in the heart and increased CVB3-induced myocarditis compared with wild-type controls. Interestingly, PAR1 enhanced poly I:C induction of CXCL10 in rat CFs but not in rat neonatal CMs. Importantly, activation of PAR1 reduced CVB3 replication in murine embryonic fibroblasts and murine embryonic cardiac myocytes. In addition, we showed that PAR1 reduced autophagy in murine embryonic fibroblasts and rat H9c2 cells, which may explain how PAR1 reduces CVB3 replication. These data suggest that PAR1 on CFs protects against CVB3-induced myocarditis by enhancing the anti-viral response whereas PAR1 on both CMs and fibroblasts inhibits viral replication.


Subject(s)
Chemokine CXCL10/metabolism , Coxsackievirus Infections/virology , Enterovirus B, Human/metabolism , Fibroblasts/metabolism , Myocarditis/metabolism , Myocytes, Cardiac/metabolism , Receptors, Proteinase-Activated/metabolism , Animals , Autophagy , Cell Line , Gene Deletion , Humans , Immunity, Innate , Inflammation , Inflammation Mediators , Macrophages/immunology , Male , Mice , Myocardium/immunology , Rats , Thrombin/metabolism , Virus Replication
7.
J Thromb Haemost ; 19(4): 1103-1111, 2021 04.
Article in English | MEDLINE | ID: mdl-33346953

ABSTRACT

BACKGROUND: Protease-activated receptor 1 (PAR1) is expressed in various immune cells and in the lung. We showed that PAR1 plays a role in Coxsackievirus B3 infection by enhancing toll-like receptor 3-dependent interferon- ß expression in cardiac fibroblasts. OBJECTIVES: We investigated the role of PAR1 in a mouse model of influenza A virus (IAV) infection. METHODS: We used mice with either a global deficiency of PAR1, cell type-specific deficiencies of PAR1, or mutation of PAR1 at the R41 or R46 cleavage sites. RESULTS: PAR1-deficient mice had increased CXCL1 expression in the lung, increased neutrophil recruitment, increased protein levels in the bronchoalveolar lavage fluid, and increased mortality after IAV infection compared with control mice infected with IAV. Results from mice with cell type-specific deletion of PAR1 indicated that PAR1 expression by hematopoietic cells suppressed CXCL1 expression, whereas PAR1 expression by endothelial cells enhanced CXCL1 expression in response to IAV infection. PAR1 activation also enhanced polyinosinic:polycytodylic acid induction of interleukin-8 in a human endothelial cell line. Mutation of the R46 cleavage site of PAR1 was associated with increased CXCL1 expression in the lung in response to IAV infection, which suggested that R46 signaling suppresses CXCL1 expression. CONCLUSIONS: These results indicate that PAR1 expression by different cell types and activation by different proteases modulates the immune response during IAV infection.


Subject(s)
Influenza A virus , Orthomyxoviridae Infections , Animals , Endothelial Cells , Lung , Mice , Mice, Inbred C57BL , Neutrophil Infiltration , Receptor, PAR-1/genetics
8.
JACC Case Rep ; 2(7): 987-990, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-34317399

ABSTRACT

We report the unique case of a patient who recovered cardiac function despite a history of doxorubicin-induced cardiomyopathy, chest radiation therapy, high dose chemotherapy post-allogeneic stem cell transplant, and triplet pregnancy. Data are sparse on doxorubicin-induced cardiomyopathy in pregnant patients, calling for further studies to help formulate management or surveillance recommendations. (Level of Difficulty: Advanced.).

SELECTION OF CITATIONS
SEARCH DETAIL
...