Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Exp Eye Res ; 215: 108898, 2022 02.
Article in English | MEDLINE | ID: mdl-34929161

ABSTRACT

Pseudoexfoliation syndrome (PXF) is an idiopathic disease with a high prevalence rate. The elastosis disorder is contributed by genetic and non-genetic factors. Elastin dysregulation associated with the disease mechanism is incompletely understood. This study evaluated the molecules of the elastogenesis machinery in PXF. Lens capsule and aqueous humor (aqH) samples (age/sex-matched) were collected from the eyes with PXF alone and PXF with glaucoma (PXF-G) undergoing Extra Capsular Cataract Extraction (ECCE) surgery. The Elastin turnover was assessed by estimating Desmosine levels in the lens capsules by HPLC analysis. Expression of elastogenesis genes [EMILIN1, CLU, FBN1, FN1, FBLN5, FBLN4 and LOXL1] were evaluated in the lens capsule by qPCR while the proteins were assessed in aqH by western blot analysis. The Desmosine content in the lens capsules were 3-fold and 6-fold elevated in PXF (P = 0.02) and PXF-G (P = 0.01) respectively compared to the cataract-alone, indicating increased elastin degradation. A significant increase in the transcript levels of the CLU, FBLN4, EMILIN1, FBLN5, FN1, FBN1, LOXL1 along with significant changes in protein expression of CLU, FBLN5, FBN1 and LOXL1 signified up-regulation of the elastogenesis machinery. The study provides direct evidence of augmented elastin degradation and turnover in the lens capsule of PXF marked by increased Desmosine content and the expression of proteins involved in mature elastin formation.


Subject(s)
Cataract , Exfoliation Syndrome , Glaucoma , Lens Capsule, Crystalline , Capsules/metabolism , Cataract/metabolism , Desmosine/metabolism , Elastin/genetics , Exfoliation Syndrome/genetics , Exfoliation Syndrome/metabolism , Glaucoma/metabolism , Humans , Lens Capsule, Crystalline/metabolism
2.
Ocul Immunol Inflamm ; 24(6): 678-683, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26807780

ABSTRACT

PURPOSE: Copper (Cu) is an essential trace element; however excess is toxic due to the pro-oxidant activity. Increased intracellular Cu levels in vitreous and monocyte were reported in Eales disease (ED) previously. Copper transporter1 (CTR1) maintains copper homeostasis and hence, we studied the presence of CTR1 in ocular tissues and its role in ED. METHODS: Real-time PCR, ELISA and Western blot experiments were performed in donor eyeballs tissues and PBMCs isolated from controls and ED. Immunostaining were performed for CTR1 from donor eyeballs and one ED case. RESULTS: CTR1 protein was expressed in all ocular tissues. PBMCs showed a three-fold increase in CTR1 protein in ED when compared with controls. Retinal sections from ED patients also revealed increased CTR1 protein expression in retinal tissues, compared with control. CONCLUSIONS: CTR1 was significantly increased in ED when compared with controls, indicating its considerable role in the ED pathology.


Subject(s)
Cation Transport Proteins/metabolism , Eye/physiopathology , Neovascularization, Pathologic/physiopathology , Retinal Vasculitis/physiopathology , Copper Transporter 1 , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...