Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 271: 116450, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38701714

ABSTRACT

The complexity and multifaceted nature of Alzheimer's disease (AD) have driven us to further explore quinazoline scaffolds as multi-targeting agents for AD treatment. The lead optimization strategy was utilized in designing of new series of derivatives (AK-1 to AK-14) followed by synthesis, characterization, and pharmacological evaluation against human cholinesterase's (hChE) and ß-secretase (hBACE-1) enzymes. Amongst them, compounds AK-1, AK-2, and AK-3 showed good and significant inhibitory activity against both hAChE and hBACE-1 enzymes with favorable permeation across the blood-brain barrier. The most active compound AK-2 revealed significant propidium iodide (PI) displacement from the AChE-PAS region and was non-neurotoxic against SH-SY5Y cell lines. The lead molecule (AK-2) also showed Aß aggregation inhibition in a self- and AChE-induced Aß aggregation, Thioflavin-T assay. Further, compound AK-2 significantly ameliorated Aß-induced cognitive deficits in the Aß-induced Morris water maze rat model and demonstrated a significant rescue in eye phenotype in the Aꞵ-phenotypic drosophila model of AD. Ex-vivo immunohistochemistry (IHC) analysis on hippocampal rat brains showed reduced Aß and BACE-1 protein levels. Compound AK-2 suggested good oral absorption via pharmacokinetic studies and displayed a good and stable ligand-protein interaction in in-silico molecular modeling analysis. Thus, the compound AK-2 can be regarded as a lead molecule and should be investigated further for the treatment of AD.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Amyloid Precursor Protein Secretases , Amyloid beta-Peptides , Cholinesterase Inhibitors , Drug Design , Quinazolines , Quinazolines/pharmacology , Quinazolines/chemical synthesis , Quinazolines/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Humans , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Acetylcholinesterase/metabolism , Rats , Structure-Activity Relationship , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Molecular Structure , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Dose-Response Relationship, Drug , Butyrylcholinesterase/metabolism , Male
2.
ACS Omega ; 9(16): 18169-18182, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38680351

ABSTRACT

Alzheimer's disease (AD) is a multifactorial and emerging neurological disorder, which has invoked researchers to develop multitargeted ligands. Herein, hybrid conjugates of 5-phenyl-1,3,4-oxadiazole and piperazines were rationally designed, synthesized, and pharmacologically evaluated against hAChE, hBChE, and hBACE-1 enzymes for the management of AD. Among the series, compound 5AD comprising pyridyl substitution at terminal nitrogen of piperazine contemplated as a paramount lead compound (hAChE, IC50 = 0.103 ± 0.0172 µM, hBChE, IC50 ≥ 10 µM, and hBACE-1, IC50 = 1.342 ± 0.078 µM). Compound 5AD showed mixed-type enzyme inhibition in enzyme kinetic studies against the hAChE enzyme. In addition, compound 5AD revealed a significant displacement of propidium iodide from the peripheral anionic site (PAS) of hAChE and excellent blood-brain barrier (BBB) permeability in a parallel artificial membrane permeation assay (PAMPA). Besides, 5AD also exhibited anti-Aß aggregation activity in self- and AChE-induced thioflavin T assay. Further, compound 5AD has shown significant improvement in learning and memory (p < 0.001) against the in vivo scopolamine-induced cognitive dysfunction mice model. The ex vivo study implied that after treatment with compound 5AD, there was a decrease in AChE and malonaldehyde (MDA) levels with an increase in catalase (CAT, oxidative biomarkers) in the hippocampal brain homogenate. Hence, compound 5AD could be regarded as a lead compound and further be explored in the treatment of AD.

3.
ACS Chem Neurosci ; 15(4): 745-771, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38327209

ABSTRACT

An efficient and promising method of treating complex neurodegenerative diseases like Alzheimer's disease (AD) is the multitarget-directed approach. Here in this work, a series of quinazoline derivatives (AV-1 to AV-21) were rationally designed, synthesized, and biologically evaluated as multitargeted directed ligands against human cholinesterase (hChE) and human ß-secretase (hBACE-1) that exhibit moderate to good inhibitory effects. Compounds AV-1, AV-2, and AV-3 from the series demonstrated balanced and significant inhibition against these targets. These compounds also displayed excellent blood-brain barrier permeability via the PAMPA-BBB assay. Compound AV-2 significantly displaced propidium iodide (PI) from the acetylcholinesterase-peripheral anionic site (AChE-PAS) and was found to be non-neurotoxic at the maximum tested concentration (80 µM) against differentiated SH-SY5Y cell lines. Compound AV-2 also prevented AChE- and self-induced Aß aggregation in the thioflavin T assay. Additionally, compound AV-2 significantly ameliorated scopolamine and Aß-induced cognitive impairments in the in vivo behavioral Y-maze and Morris water maze studies, respectively. The ex vivo and biochemical analysis further revealed good hippocampal AChE inhibition and the antioxidant potential of the compound AV-2. Western blot and immunohistochemical (IHC) analysis of hippocampal brain revealed reduced Aß, BACE-1, APP/Aß, and Tau molecular protein expressions levels. The pharmacokinetic analysis of compound AV-2 demonstrated significant oral absorption with good bioavailability. The in silico molecular modeling studies of lead compound AV-2 moreover demonstrated a reasonable binding profile with AChE and BACE-1 enzymes and stable ligand-protein complexes throughout the 100 ns run. Compound AV-2 can be regarded as the lead candidate and could be explored more for AD therapy.


Subject(s)
Alzheimer Disease , Neuroblastoma , Humans , Alzheimer Disease/metabolism , Acetylcholinesterase/metabolism , Structure-Activity Relationship , Cholinesterase Inhibitors/chemistry , Drug Design , Amyloid beta-Peptides/metabolism , Molecular Docking Simulation
4.
Bioorg Chem ; 139: 106749, 2023 10.
Article in English | MEDLINE | ID: mdl-37517157

ABSTRACT

Our present work demonstrates the molecular hybridization-assisted design, synthesis, and biological evaluation of 22 benzylpiperazine-linked 1,2,4-triazole compounds (PD1-22) as AD modifying agents. All the compounds were tested for their in vitro hChEs, hBACE-1, and Aß-aggregation inhibition properties. Among them, compound PD-08 and PD-22 demonstrated good hChE and hBACE-1 inhibition as compared to standards donepezil and rivastigmine. Both compounds displaced PI from PAS at 50 µM concentration which was comparable to donepezil and also demonstrated anti-Aß aggregation properties in self- and AChE-induced thioflavin T assay. Both compounds have shown excellent BBB permeation via PAMPA-BBB assay and were found to be non-neurotoxic at 80 µM concentration against differentiated SH-SY5Y cell lines. Compound PD-22 demonstrated an increase in rescued eye phenotype in Aß-phenotypic drosophila AD model and amelioration of behavioral deficits in the Aß-induced rat model of AD. The in-silico docking studies of compound PD-22 revealed a good binding profile towards CAS and PAS residues of AChE and the catalytic dyad of the BACE-1. The 100 ns molecular dynamics simulation studies of compound PD-22 complexed with AChE and BACE-1 enzymes suggested stable ligand-protein complex throughout the simulation run. Based on our findings compound PD-22 could further be utilized as a lead to design a promising candidate for AD therapy.


Subject(s)
Alzheimer Disease , Neuroblastoma , Humans , Rats , Animals , Alzheimer Disease/metabolism , Donepezil/pharmacology , Thiones , Molecular Docking Simulation , Piperazines/pharmacology , Molecular Dynamics Simulation , Cholinesterase Inhibitors/chemistry , Acetylcholinesterase/metabolism , Amyloid beta-Peptides/metabolism , Drug Design , Structure-Activity Relationship
5.
Bioorg Chem ; 119: 105562, 2022 02.
Article in English | MEDLINE | ID: mdl-34952243

ABSTRACT

Alzheimer's disease (AD) is a progressive neurological illness that causes dementia mainly in the elderly. The challenging obstacles related to AD has freaked global healthcare system to encourage scientists in developing novel therapeutic startegies to overcome with the fatal disease. The current treatment therapy of AD provides only symptomatic relief and to some extent disease-modifying effects. The current approach for AD treatment involves designing of cholinergic inhibitors, Aß disaggregation inducing agents, tau inhibitors and several antioxidants. Hence, extensive research on AD therapy urgently requires a deep understanding of its pathophysiology and exploration of various chemical scaffolds to design and develop a potential drug candidate for the treatment. Various issues linked between disease and therapy need to be considered such as BBB penetration capability, clinical failure and multifaceted pathophisiology requires a proper attention to develop a lead candidate. This review article covers all probable mechanisms including one of the recent areas for investigation i.e., lipid dyshomeostasis, pathogenic involvement of P. gingivalis and neurovascular dysfunction, recently reported molecules and drugs under clinical investigations and approved by FDA for AD treatment. Our summarized information on AD will attract the researchers to understand and explore current status and structural modifications of the recently reported heterocyclic derivatives in drug development for AD therapy.


Subject(s)
Alzheimer Disease/drug therapy , Anti-Bacterial Agents/pharmacology , Heterocyclic Compounds/pharmacology , Neuroprotective Agents/pharmacology , Porphyromonas gingivalis/drug effects , Alzheimer Disease/metabolism , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Humans , Microbial Sensitivity Tests , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry
6.
J Biomol Struct Dyn ; 38(6): 1683-1696, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31057090

ABSTRACT

Indoleamine-2,3-dioxygenase 1 (IDO1) is an extrahepatic, heme-containing and tryptophan-catalyzing enzyme responsible for causing blockade of T-cell proliferation and differentiation by depleting tryptophan level in cancerous cells. Therefore, inhibition of IDO1 may be a useful strategy for immunotherapy against cancer. In this study, 448 structurally diverse IDO1 inhibitors with a wide range of activity has been taken into consideration for classification QSAR analysis through Monte Carlo Optimization by using different splits as well as different combinations of SMILES-based, graph-based and hybrid descriptors. The best model from Monte Carlo optimization was interpreted to find out the good and bad structural fingerprints for IDO1 and further justified by using Bayesian classification QSAR modeling. Among the three splits in Monte Carlo optimization, the statistics of the best model was obtained from Split 3: sensitivity = 0.87, specificity = 0.91, accuracy = 0.89 and MCC = 0.78. In Bayesian classification modeling, the ROC scores for training and test set were found to be 0.91 and 0.86, respectively. The combined modeling analysis revealed that the presence of aryl hydrazyl sulphonyl moiety, furazan ring, halogen substitution, nitro group and hetero atoms in aromatic system can be very useful in designing IDO1 inhibitors. All the good and bad structural fingerprints for IDO1 were identified and are justified by correlating these fragments to the inhibition of IDO1 enzyme. These structural fingerprints will guide the researchers in this field to design better inhibitors against IDO1 enzyme for cancer immunotherapy.Communicated by Ramaswamy H. Sarma.


Subject(s)
Neoplasms , Quantitative Structure-Activity Relationship , Bayes Theorem , Enzyme Inhibitors/pharmacology , Humans , Immunotherapy , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...