Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Protein Sci ; 32(12): e4833, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37937856

ABSTRACT

Viral pathogenesis typically involves numerous molecular mechanisms. Protein aggregation is a relatively unknown characteristic of viruses, despite the fact that viral proteins have been shown to form terminally misfolded forms. Zika virus (ZIKV) is a neurotropic one with the potential to cause neurodegeneration. Its protein amyloid aggregation may link the neurodegenerative component to the pathogenicity associated with the viral infection. Therefore, we investigated protein aggregation in the ZIKV proteome as a putative pathogenic route and one of the alternate pathways. We discovered that it contains numerous anticipated aggregation-prone regions in this investigation. To validate our prediction, we used a combination of supporting experimental techniques routinely used for morphological characterization and study of amyloid aggregates. Several ZIKV proteins and peptides, including the full-length envelope protein, its domain III (EDIII) and fusion peptide, Pr N-terminal peptide, NS1 ß-roll peptide, membrane-embedded signal peptide 2K, and cytosolic region of NS4B protein, were shown to be highly aggregating in our study. Because our findings show that viral proteins can form amyloids in vitro, we need to do a thorough functional study of these anticipated APRs to understand better the role of amyloids in the pathophysiology of ZIKV infection.


Subject(s)
Zika Virus Infection , Zika Virus , Humans , Zika Virus/metabolism , Protein Aggregates , Antibodies, Viral , Viral Envelope Proteins/chemistry , Peptides/metabolism , Amyloidogenic Proteins/metabolism
2.
ACS Chem Neurosci ; 14(20): 3818-3825, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37802503

ABSTRACT

ADAM 17, a disintegrin and metalloproteinase 17 belonging to the adamalysin protein family, is a Zn2+-dependent type-I transmembrane α-secretase protein. As a major sheddase, ADAM 17 acts as an indispensable regulator of chief cellular events and controls diverse cytokines, adhesion molecules, and growth factors. The signal peptide (residues 1-17) of ADAM 17 targets the protein to the secretory pathway and gets cleaved off afterward. No other function is documented for the ADAM 17 signal peptide (ADAM 17-SP) inside the cells. Here, we have taken a reductionist approach to understand the biophysical properties of ADAM 17-SP. Aiming to understand the possibility of aggregation, we found several aggregation-prone segments in the signal peptide. We performed in vitro experiments to show that the signal peptide forms amyloid-like aggregates in buffered conditions. We also studied its aggregation in the presence of sodium tripolyphosphate and heparin to correlate with the cellular conditions, as these biomolecules are naturally present inside cells. Further, we performed seeding experiments to observe the possibility of ADAM 17-SP aggregate interaction with the Aß42 peptide. The results suggest that its seeds escalate the aggregation kinetics of the Aß42 peptide and form heteromeric aggregates with it. We believe this finding could further intensify the aggregation studies on other signal peptides and shed light on the potential role of these segments other than signaling.


Subject(s)
Amyloid beta-Peptides , Protein Sorting Signals , Amyloid beta-Peptides/metabolism , ADAM17 Protein/metabolism , Peptide Fragments/metabolism , Amyloid/metabolism , Amyloidogenic Proteins , Membrane Proteins
3.
Nat Commun ; 14(1): 945, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36806058

ABSTRACT

The phenomenon of protein aggregation is associated with a wide range of human diseases. Our knowledge of the aggregation behaviour of viral proteins, however, is still rather limited. Here, we investigated this behaviour in the SARS-CoV and SARS-CoV-2 proteomes. An initial analysis using a panel of sequence-based predictors suggested the presence of multiple aggregation-prone regions (APRs) in these proteomes and revealed a strong aggregation propensity in some SARS-CoV-2 proteins. We then studied the in vitro aggregation of predicted aggregation-prone SARS-CoV and SARS-CoV-2 proteins and protein regions, including the signal sequence peptide and fusion peptides 1 and 2 of the spike protein, a peptide from the NSP6 protein, and the ORF10 and NSP11 proteins. Our results show that these peptides and proteins can form amyloid aggregates. We used circular dichroism spectroscopy to reveal the presence of ß-sheet rich cores in aggregates and X-ray diffraction and Raman spectroscopy to confirm the formation of amyloid structures. Furthermore, we demonstrated that SARS-CoV-2 NSP11 aggregates are toxic to mammalian cell cultures. These results motivate further studies about the possible role of aggregation of SARS proteins in protein misfolding diseases and other human conditions.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , Animals , Amyloidogenic Proteins , Proteome , SARS-CoV-2 , Mammals
4.
Blood Cells Mol Dis ; 98: 102701, 2023 01.
Article in English | MEDLINE | ID: mdl-36057195

ABSTRACT

Platelet-derived microvesicles (PMVs) are the most abundant microvesicles in circulation, originating from blood platelets via membrane blebbing. PMVs act as biological cargo carrying key molecules from platelets, including immunomodulatory molecules, growth factors, clotting molecules, and miRNAs that can regulate recipient cellular functions. Formation and release of PMVs play an essential role in the pathophysiology of vascular diseases such as hemostasis, inflammation, and thrombosis. Platelet activation is considered the critical event in thrombosis, and a growing number of evidence suggests that oxidative stress-mediated signaling plays a significant role in platelet activation. Ca2+ is a notable player in the generation of ROS in platelets. Reports have established that microvesicles exhibit dual nature in redox mechanisms as they possess both pro-oxidant and antioxidant machinery. However, the impact of PMVs and their ROS machinery on platelets is still a limited explored area. Here, we have demonstrated that PMVs mediate platelet activation via intracellular ROS generation. PMVs interacted with platelets and induced calcium-mediated intracellular ROS production via NADPH oxidase (NOX), leading to platelet activation. Our findings will open up new insights into the tangible relationship of PMVs with platelets and will further contribute to the therapeutic aspects of PMVs in vascular injury and tissue remodeling.


Subject(s)
Blood Platelets , Thrombosis , Humans , Blood Platelets/metabolism , Reactive Oxygen Species/metabolism , Calcium/metabolism , Platelet Activation , Thrombosis/metabolism
5.
Virology ; 575: 20-35, 2022 10.
Article in English | MEDLINE | ID: mdl-36037701

ABSTRACT

Zika virus (ZIKV) NS4B protein is a membranotropic multifunctional protein. Despite its versatile functioning, its topology and dynamics are not entirely understood. There is no X-ray or cryo-EM structure available for any flaviviral NS4B full-length protein. In this study, we have investigated the structural dynamics of full-length ZIKV NS4B protein through 3D structure models using molecular dynamics simulations and experimental techniques. Also, we employed a reductionist approach to understand the dynamics of NS4B protein where we studied its N-terminal (residues 1-38), C-terminal (residues 194-251), and cytosolic (residues 131-169) regions in isolation in addition to the full-length protein. Further, using a series of circular dichroism spectroscopic experiments, we validate the cytosolic region as an intrinsically disordered protein region. The microsecond-long all atoms molecular dynamics and replica-exchange simulations complement the experimental observations. Furthermore, we have also studied the NS4B proteins C-terminal regions of four other flaviviruses viz. DENV2, JEV, WNV, and YFV through microsecond simulations to characterize their behaviour in presence and absence of lipid membranes. There are significant differences observed in the conformations of other flavivirus NS4B C-terminal regions in comparison to ZIKV NS4B. Lastly, we have proposed a ZIKV NS4B protein model illustrating its putative topology consisting of various membrane-spanning and non-membranous regions.


Subject(s)
Flavivirus , Intrinsically Disordered Proteins , Viral Nonstructural Proteins/chemistry , Zika Virus Infection , Zika Virus , Flavivirus/metabolism , Humans , Intrinsically Disordered Proteins/metabolism , Lipids , Zika Virus/chemistry
6.
Expert Rev Proteomics ; 19(3): 183-196, 2022 03.
Article in English | MEDLINE | ID: mdl-35655146

ABSTRACT

INTRODUCTION: The life cycle of a virus involves interacting with the host cell, entry, hijacking host machinery for viral replication, evading the host's immune system, and releasing mature virions. However, viruses, being small in size, can only harbor a genome large enough to code for the minimal number of proteins required for the replication and maturation of the virions. As a result, many viral proteins are multifunctional machines that do not directly obey the classic structure-function paradigm. Often, such multifunctionality is rooted in intrinsic disorder that allows viral proteins to interact with various cellular factors and remain functional in the hostile environment of different cellular compartments. AREAS COVERED: This report covers the classification of flaviviruses, their proteome organization, and the prevalence of intrinsic disorder in the proteomes of different flaviviruses. Further, we have summarized the speculations made about the apparent roles of intrinsic disorder in the observed multifunctionality of flaviviral proteins. EXPERT OPINION: Small sizes of viral genomes impose multifunctionality on their proteins, which is dependent on the excessive usage of intrinsic disorder. In fact, intrinsic disorder serves as a universal functional tool, weapon, and armor of viruses and clearly plays an important role in their functionality and evolution.


Subject(s)
Flavivirus , Viruses , Humans , Flavivirus/genetics , Flavivirus/metabolism , Proteome/genetics , Viral Proteins/metabolism , Virus Replication/genetics , Genome, Viral/genetics , Viruses/metabolism
7.
RSC Adv ; 12(9): 5648-5655, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35425590

ABSTRACT

One of the major virulence factors of SARS-CoV-2, NSP1, is a vital drug target due to its role in host immune evasion through multiple pathways. NSP1 protein is associated with inhibiting host mRNA translation by binding to the small subunit of ribosome through its C-terminal region. Previously, we have shown the structural dynamics of the NSP1 C-terminal region (NSP1-CTR) in different physiological environments. So, it would be very interesting to investigate the druggable compounds that could bind with NSP1-CTR. Here, in this article, we have performed different spectroscopic technique-based binding assays of an anticancer drug mitoxantrone dihydrochloride (MTX) against the NSP1-CTR. We have also performed molecular dynamics simulations of the docked complex with two different force fields up to one microsecond. Overall, our results have suggested good binding between NSP1-CTR and MTX and may have implications in developing therapeutic strategies targeting the NSP1 protein of SARS-CoV-2.

8.
J Biomol Struct Dyn ; 40(7): 3170-3184, 2022 04.
Article in English | MEDLINE | ID: mdl-33179586

ABSTRACT

Given the COVID-19 pandemic, currently, there are many drugs in clinical trials against this virus. Among the excellent drug targets of SARS-CoV-2 are its proteases (Nsp3 and Nsp5) that plays vital role in polyprotein processing giving rise to functional nonstructural proteins, essential for viral replication and survival. Nsp5 (also known as Mpro) hydrolyzes replicase polyprotein (1ab) at eleven different sites. For targeting Mpro, we have employed drug repurposing approach to identify potential inhibitors of SARS-CoV-2 in a shorter time span. Screening of approved drugs through docking reveals Hyaluronic acid and Acarbose among the top hits which are showing strong interactions with catalytic site residues of Mpro. We have also performed docking of drugs Lopinavir, Ribavirin, and Azithromycin on SARS-CoV-2 Mpro. Further, binding of these compounds (Hyaluronic acid, Acarbose, and Lopinavir) is validated by extensive molecular dynamics simulation of 500 ns where these drugs show stable binding with Mpro. We believe that the high-affinity binding of these compounds will help in designing novel strategies for structure-based drug discovery against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Drug Treatment , Pandemics , Coronavirus 3C Proteases , Humans , Molecular Docking Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2
9.
Virology ; 566: 42-55, 2022 01.
Article in English | MEDLINE | ID: mdl-34864296

ABSTRACT

All available SARS-CoV-2 spike protein crystal and cryo-EM structures have shown missing electron densities for cytosolic C-terminal regions (CTR). Generally, the missing electron densities point towards the intrinsically disordered nature of the protein region (IDPR). This curiosity has led us to investigate the cytosolic CTR of the spike glycoprotein of SARS-CoV-2 in isolation. The spike CTR is supposed to be from 1235 to 1273 residues or 1242-1273 residues based on our used prediction. Therefore, we have demonstrated the structural conformation of cytosolic region and its dynamics through computer simulations up to microsecond timescale using OPLS and CHARMM forcefields. The simulations have revealed the unstructured conformation of cytosolic region. Further, we have validated our computational observations with circular dichroism (CD) spectroscopy-based experiments and found its signature spectra at 198 nm. We believe that our findings will surely help in understanding the structure-function relationship of the spike protein's cytosolic region.


Subject(s)
COVID-19/virology , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Circular Dichroism/methods , Cryoelectron Microscopy , Humans , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Protein Domains , Spectrum Analysis , Structure-Activity Relationship
10.
J Biomol Struct Dyn ; 40(21): 10763-10770, 2022.
Article in English | MEDLINE | ID: mdl-34320905

ABSTRACT

Currently, several vaccines and antivirals across the globe are in clinical trials. Hydroxychloroquine (HCQ) was reported to inhibit the SARS-CoV-2 virus in antiviral assays. Here, it raises the curiosity about the molecular target of HCQ inside the cell. It may inhibit some of the viral targets, or some other complex mechanisms must be at disposal towards action mechanisms. In some of the viruses, proteases are experimentally reported to be a potential target of HCQ. However, no in-depth investigations are available in the literature yet. Henceforth, we have carried out extensive, one-microsecond long molecular dynamics simulations of the bound complex of hydroxychloroquine with main protease (Mpro) of SARS-CoV-2. Our analysis found that HCQ binds within the catalytic pocket of Mpro and remains stable upto one-third of simulation time but further causes increased fluctuations in simulation parameters. In the end, the HCQ does not possess any pre-formed hydrogen bond, other non-covalent interactions with Mpro, ultimately showing the unsteadiness in binding at catalytic binding pocket and may suggest that HCQ may not inhibit the Mpro. In the future, this study would require experimental validation on enzyme assays against Mpro, and that may be the final say. Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiviral Agents , Hydroxychloroquine , Protease Inhibitors , SARS-CoV-2 , Antiviral Agents/pharmacology , Hydroxychloroquine/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects
11.
Microb Pathog ; 158: 105041, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34119626

ABSTRACT

The intrinsically disordered proteins/regions (IDPs/IDPRs) are known to be responsible for multiple cellular processes and are associated with many chronic diseases. In viruses, the existence of a disordered proteome is also proven and is related to its conformational dynamics inside the host. The SARS-CoV-2 has a large proteome, in which, structure and functions of all proteins are not known yet, along with non-structural protein 11 (nsp11). In this study, we have performed extensive experimentation on nsp11. Our results based on the CD spectroscopy gives characteristic disordered spectrum for IDPs. Further, we investigated the conformational behavior of nsp11 in the presence of membrane mimetic environment, α-helix inducer, and natural osmolyte. In the presence of negatively charged and neutral liposomes, nsp11 remains disordered. However, with SDS micelle, it adopted an α-helical conformation, suggesting the helical propensity of nsp11. Finally, we again confirmed the IDP behavior of nsp11 using MD simulations. In future, this conformational dynamic study could help to clarify its functional importance in SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Amino Acids , Humans , Protein Conformation , Solvents
12.
J Biol Chem ; 297(1): 100903, 2021 07.
Article in English | MEDLINE | ID: mdl-34157284

ABSTRACT

c-Myc is a transcription factor that plays a crucial role in cellular homeostasis, and its deregulation is associated with highly aggressive and chemotherapy-resistant cancers. After binding with partner MAX, the c-Myc-MAX heterodimer regulates the expression of several genes, leading to an oncogenic phenotype. Although considered a crucial therapeutic target, no clinically approved c-Myc-targeted therapy has yet been discovered. Here, we report the discovery via computer-aided drug discovery of a small molecule, L755507, which functions as a c-Myc inhibitor to efficiently restrict the growth of diverse Myc-expressing cells with low micromolar IC50 values. L755507 successfully disrupts the c-Myc-MAX heterodimer, resulting in decreased expression of c-Myc target genes. Spectroscopic and computational experiments demonstrated that L755507 binds to the c-Myc peptide and thereby stabilizes the helix-loop-helix conformation of the c-Myc transcription factor. Taken together, this study suggests that L755507 effectively inhibits the c-Myc-MAX heterodimerization and may be used for further optimization to develop a c-Myc-targeted antineoplastic drug.


Subject(s)
Antineoplastic Agents/chemistry , Apoptosis/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/chemistry , Protein Multimerization/drug effects , Proto-Oncogene Proteins c-myc/chemistry , Antineoplastic Agents/pharmacology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Binding Sites , Drug Discovery , HT29 Cells , Humans , Molecular Docking Simulation , Protein Binding/drug effects , Proto-Oncogene Proteins c-myc/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
13.
Future Med Chem ; 13(16): 1341-1352, 2021 08.
Article in English | MEDLINE | ID: mdl-34114895

ABSTRACT

Aims: c-Myc, along with its partner MAX, regulates the expression of several genes, leading to an oncogenic phenotype. The MAX interacting interface of c-Myc is disordered and uncharacterized for small molecule binding. Salvianolic acid B possesses numerous therapeutic properties, including anticancer activity. The current study was designed to elucidate the interaction of the Sal_Ac_B with the disordered bHLH domain of c-Myc using computational and biophysical techniques. Materials & methods: The binding of Sal_Ac_B with Myc was studied using computational and biophysical techniques, including molecular docking and simulation, fluorescence lifetime, circular dichroism and anisotropy. Results & conclusions: The study demonstrated a high binding potential of Sal_Ac_B against the disordered Myc peptide. The binding of the compounds leads to an overall conformational change in Myc. Moreover, an extensive simulation study showed a stable Sal_Ac_B/Myc binding.


Subject(s)
Antineoplastic Agents/pharmacology , Benzofurans/pharmacology , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Anisotropy , Antineoplastic Agents/chemistry , Benzofurans/chemistry , Binding Sites/drug effects , Circular Dichroism , Humans , Models, Molecular , Molecular Conformation , Proto-Oncogene Proteins c-myc/chemistry , Spectrometry, Fluorescence
14.
Cell Mol Life Sci ; 78(4): 1655-1688, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32712910

ABSTRACT

The recently emerged coronavirus designated as SARS-CoV-2 (also known as 2019 novel coronavirus (2019-nCoV) or Wuhan coronavirus) is a causative agent of coronavirus disease 2019 (COVID-19), which is rapidly spreading throughout the world now. More than 1.21 million cases of SARS-CoV-2 infection and more than 67,000 COVID-19-associated mortalities have been reported worldwide till the writing of this article, and these numbers are increasing every passing hour. The World Health Organization (WHO) has declared the SARS-CoV-2 spread as a global public health emergency and admitted COVID-19 as a pandemic now. Multiple sequence alignment data correlated with the already published reports on SARS-CoV-2 evolution indicated that this virus is closely related to the bat severe acute respiratory syndrome-like coronavirus (bat SARS-like CoV) and the well-studied human SARS coronavirus (SARS-CoV). The disordered regions in viral proteins are associated with the viral infectivity and pathogenicity. Therefore, in this study, we have exploited a set of complementary computational approaches to examine the dark proteomes of SARS-CoV-2, bat SARS-like, and human SARS CoVs by analysing the prevalence of intrinsic disorder in their proteins. According to our findings, SARS-CoV-2 proteome contains very significant levels of structural order. In fact, except for nucleocapsid, Nsp8, and ORF6, the vast majority of SARS-CoV-2 proteins are mostly ordered proteins containing less intrinsically disordered protein regions (IDPRs). However, IDPRs found in SARS-CoV-2 proteins are functionally important. For example, cleavage sites in its replicase 1ab polyprotein are found to be highly disordered, and almost all SARS-CoV-2 proteins contains molecular recognition features (MoRFs), which are intrinsic disorder-based protein-protein interaction sites that are commonly utilized by proteins for interaction with specific partners. The results of our extensive investigation of the dark side of SARS-CoV-2 proteome will have important implications in understanding the structural and non-structural biology of SARS or SARS-like coronaviruses.


Subject(s)
Betacoronavirus/chemistry , Chiroptera/virology , Coronavirus Infections/virology , Intrinsically Disordered Proteins/chemistry , Proteome/analysis , Viral Proteins/chemistry , Animals , DNA-Binding Proteins/chemistry , Humans , Models, Molecular , Protein Binding , Protein Interaction Domains and Motifs , RNA-Binding Motifs , SARS-CoV-2/chemistry , Structure-Activity Relationship
15.
Arch Biochem Biophys ; 695: 108631, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33080173

ABSTRACT

Among Flaviviridae, in West Nile virus (WNV) and Hepatitis C virus (HCV), the non-structural protein NS4A modulates the NTPase activity of viral helicases during nucleic acid unwinding through its N-terminal disordered residues (1-50). In HCV, the acidic NS4A also serves as a cofactor for regulating the NS3 protease activity. However, in case of Zika virus (ZIKV), the role of NS4A and its impact on activities of NS3 helicase and protease is not known. In order to elucidate the role of NS4A, we checked the NTPase activity of NS3 helicase and protease activity of NS3 protease in presence of NS4A N-terminal region (residues 1-48) peptide. Our enzyme kinetics results together with binding experiment clearly demonstrate that NS3 helicase in presence of NS4A peptide increased the rate of ATP hydrolysis whereas the protease activity of NS3 protease was not affected. Therefore, like WNV and HCV, our results establish a role of ZIKV NS4A being a cofactor for modulating the NTPase activity of ZIKV NS3 helicase.


Subject(s)
Nucleoside-Triphosphatase/chemistry , RNA Helicases/chemistry , Serine Endopeptidases/chemistry , Viral Proteins/chemistry , Zika Virus/enzymology , Coenzymes , Nucleoside-Triphosphatase/genetics , Protein Domains , RNA Helicases/genetics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Zika Virus/genetics
16.
Expert Rev Vaccines ; 19(9): 887-898, 2020 09.
Article in English | MEDLINE | ID: mdl-32815406

ABSTRACT

INTRODUCTION: The ongoing life-threatening pandemic of coronavirus disease 2019 (COVID-19) has extensively affected the world. During this global health crisis, it is fundamentally crucial to find strategies to combat SARS-CoV-2. Despite several efforts in this direction and continuing clinical trials, no vaccine has been approved for it yet. METHODS: To find a preventive measure, we have computationally designed a multi-epitopic subunit vaccine using immuno-informatic approaches. RESULTS: The structural proteins of SARS-CoV-2 involved in its survival and pathogenicity were used to predict antigenic epitopes. The antigenic epitopes were capable of eliciting a strong humoral as well as cell-mediated immune response, our predictions suggest. The final vaccine was constructed by joining the all epitopes with specific linkers and to enhance their stability and immunogenicity. The physicochemical property of the vaccine was assessed. The vaccine 3D structure prediction and validation were done and docked with the human TLR-3 receptor. Furthermore, molecular dynamics simulations of the vaccine-TLR-3 receptor complex are employed to assess its dynamic motions and binding stability in-silico. CONCLUSION: Based on this study, we strongly suggest synthesizing this vaccine, which further can be tested in-vitro and in-vivo to check its potency in a cure for COVID-19.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Epitopes/immunology , Immunity, Cellular , Immunity, Humoral , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , COVID-19 , COVID-19 Vaccines , Computer Simulation , Coronavirus Infections/immunology , Coronavirus Infections/virology , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Immunogenicity, Vaccine , Molecular Docking Simulation , Pneumonia, Viral/virology , SARS-CoV-2 , Vaccines, Subunit/immunology
17.
FEBS J ; 287(17): 3751-3776, 2020 09.
Article in English | MEDLINE | ID: mdl-32473054

ABSTRACT

Japanese encephalitis virus (JEV) is one of the major causes of viral encephalitis all around the globe. Approximately 3 billion people in endemic areas are at risk of Japanese encephalitis. To develop a wholistic understanding of the viral proteome, it is important to investigate both its ordered and disordered proteins. However, the functional and structural significance of disordered regions in the JEV proteome has not been systematically investigated as of yet. To fill this gap, we used here a set of bioinformatics tools to analyze the JEV proteome for the predisposition of its proteins for intrinsic disorder and for the presence of the disorder-based binding regions (also known as molecular recognition features, MoRFs). We also analyzed all JEV proteins for the presence of the probable nucleic acid-binding (DNA and RNA) sites. The results of these computational studies are experimentally validated using JEV capsid protein as an illustrative example. In agreement with bioinformatic analysis, we found that the N-terminal region of the JEV capsid (residues 1-30) is intrinsically disordered. We showed that this region is characterized by the temperature response typical for highly disordered proteins. Furthermore, we have experimentally shown that this disordered N-terminal domain of a capsid protein has a noticeable 'gain-of-structure' potential. In addition, using DOPS liposomes, we demonstrated the presence of pronounced membrane-mediated conformational changes in the N-terminal region of JEV capsid. In our view, this disorder-centric analysis would be helpful for a better understanding of the JEV pathogenesis.


Subject(s)
Encephalitis Virus, Japanese/metabolism , Intrinsically Disordered Proteins/chemistry , Proteome , Viral Proteins/chemistry , Encephalitis Virus, Japanese/pathogenicity , Encephalitis, Japanese/virology , Humans , Models, Molecular , Nucleic Acids/metabolism , Protein Conformation , Protein Domains , Viral Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...