Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 119(49): 11772-82, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26565126

ABSTRACT

We report angle- and momentum-resolved measurements of the dissociative ionization and Coulomb explosion of methyl halides (CH3F, CH3Cl, CH3Br, and CH3I) in intense phase-controlled two-color laser fields. At moderate laser intensities, we find that the emission asymmetry of low-energy CH3(+) fragments from the CH3(+) + X(+) (X = F, Cl, Br, or I) channel reflects the asymmetry of the highest occupied molecular orbital of the neutral molecule with important contributions from the Stark effect. This asymmetry is correctly predicted by the weak-field asymptotic theory, provided that the Stark effect on the ionization potentials is calculated using a nonperturbative multielectron approach. In the case of high laser intensities, we observe a reversal of the emission asymmetries for high-energy CH3(+) fragments, originating from the dissociation of CH3X(q+) with q ≥ 2. We propose ionization to electronically excited states to be at the origin of the reversed asymmetries. We also report the measurements of the emission asymmetry of H3(+), which is found to be identical to that of the low-energy CH3(+) fragments measured at moderate laser intensities. All observed fragmentation channels are assigned with the help of CCSD(T) calculations. Our results provide a benchmark for theories of strong-field processes and demonstrate the importance of multielectron effects in new aspects of the molecular response to intense laser fields.

2.
J Chem Phys ; 136(16): 164308, 2012 Apr 28.
Article in English | MEDLINE | ID: mdl-22559483

ABSTRACT

Negative ion resonance states of ammonia are accessed upon capture of electrons with energy 5.5 eV and 10.5 eV, respectively. These resonance states dissociate to produce H(-) and NH(2)(-) fragment anions via different fragmentation channels. Using the velocity slice imaging technique, we measured the angular and kinetic energy distribution of the fragment H(-) and NH(2)(-) anions with full 0-2π angular coverage across the two resonances. The scattered H(-) ions at both resonances show variation in their angular distribution as a function of the kinetic energy indicating geometric rearrangement of NH(3)(-*) ion due to internal excitations and differ from the equilibrium geometry of the neutral molecule. The second resonance at 10.5 eV shows strong forward-backward asymmetry in the scattering of H(-) and NH(2)(-) fragment ions. Based on the angular distributions of the H(-) ions, the symmetry of the resonances at 5.5 eV and 10 .5 eV are determined to be A(1) and E, respectively, within C(3v) geometry.


Subject(s)
Ammonia/chemistry , Electrons , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...