Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2957, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580646

ABSTRACT

Nonsense mutations - the underlying cause of approximately 11% of all genetic diseases - prematurely terminate protein synthesis by mutating a sense codon to a premature stop or termination codon (PTC). An emerging therapeutic strategy to suppress nonsense defects is to engineer sense-codon decoding tRNAs to readthrough and restore translation at PTCs. However, the readthrough efficiency of the engineered suppressor tRNAs (sup-tRNAs) largely varies in a tissue- and sequence context-dependent manner and has not yet yielded optimal clinical efficacy for many nonsense mutations. Here, we systematically analyze the suppression efficacy at various pathogenic nonsense mutations. We discover that the translation velocity of the sequence upstream of PTCs modulates the sup-tRNA readthrough efficacy. The PTCs most refractory to suppression are embedded in a sequence context translated with an abrupt reversal of the translation speed leading to ribosomal collisions. Moreover, modeling translation velocity using Ribo-seq data can accurately predict the suppression efficacy at PTCs. These results reveal previously unknown molecular signatures contributing to genotype-phenotype relationships and treatment-response heterogeneity, and provide the framework for the development of personalized tRNA-based gene therapies.


Subject(s)
Codon, Nonsense , RNA, Transfer , Codon, Nonsense/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism , Codon/genetics , Ribosomes/metabolism , Genetic Therapy , Protein Biosynthesis/genetics , Codon, Terminator
2.
J Biol Chem ; 299(9): 105089, 2023 09.
Article in English | MEDLINE | ID: mdl-37495112

ABSTRACT

Recent discoveries establish tRNAs as central regulators of mRNA translation dynamics, and therefore cotranslational folding and function of the encoded protein. The tRNA pool, whose composition and abundance change in a cell- and tissue-dependent manner, is the main factor which determines mRNA translation velocity. In this review, we discuss a group of pathogenic mutations, in the coding sequences of either protein-coding genes or in tRNA genes, that alter mRNA translation dynamics. We also summarize advances in tRNA biology that have uncovered how variations in tRNA levels on account of genetic mutations affect protein folding and function, and thereby contribute to phenotypic diversity in clinical manifestations.


Subject(s)
Mutation , Protein Biosynthesis , RNA, Messenger , RNA, Transfer , Humans , Codon/genetics , Protein Biosynthesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Polymorphism, Single Nucleotide , Time Factors
3.
Nature ; 618(7966): 842-848, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37258671

ABSTRACT

Nonsense mutations are the underlying cause of approximately 11% of all inherited genetic diseases1. Nonsense mutations convert a sense codon that is decoded by tRNA into a premature termination codon (PTC), resulting in an abrupt termination of translation. One strategy to suppress nonsense mutations is to use natural tRNAs with altered anticodons to base-pair to the newly emerged PTC and promote translation2-7. However, tRNA-based gene therapy has not yielded an optimal combination of clinical efficacy and safety and there is presently no treatment for individuals with nonsense mutations. Here we introduce a strategy based on altering native tRNAs into  efficient suppressor tRNAs (sup-tRNAs) by individually fine-tuning their sequence to the physico-chemical properties of the amino acid that they carry. Intravenous and intratracheal lipid nanoparticle (LNP) administration of sup-tRNA in mice restored the production of functional proteins with nonsense mutations. LNP-sup-tRNA formulations caused no discernible readthrough at endogenous native stop codons, as determined by ribosome profiling. At clinically important PTCs in the cystic fibrosis transmembrane conductance regulator gene (CFTR), the sup-tRNAs re-established expression and function in cell systems and patient-derived nasal epithelia and restored airway volume homeostasis. These results provide a framework for the development of tRNA-based therapies with a high molecular safety profile and high efficacy in targeted PTC suppression.


Subject(s)
Codon, Nonsense , Cystic Fibrosis Transmembrane Conductance Regulator , RNA, Transfer , Animals , Mice , Amino Acids/genetics , Codon, Nonsense/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , RNA, Transfer/administration & dosage , RNA, Transfer/genetics , RNA, Transfer/therapeutic use , Base Pairing , Anticodon/genetics , Protein Biosynthesis , Nasal Mucosa/metabolism , Ribosome Profiling
4.
Chem Res Toxicol ; 35(8): 1393-1399, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35796757

ABSTRACT

The use of many essential drugs is restricted due to their deleterious effects on the liver. Molecules that can prevent or protect the liver from drug-induced liver injury (DILI) would be invaluable in such situations. We used a transgenic line in zebrafish with a hepatocyte-specific expression of bacterial nitroreductase to cause temporally controlled liver damage. A whole organism-based chemical screen using the transgenic line identified BML-257, a potent small molecule AKT inhibitor, that protected the liver against metronidazole-induced liver injury. BML-257 also showed potent prophylactic and pro-regenerative activity in this liver damage model. BML-257 was tested in two independent toxicological models of liver injury caused by acetaminophen and isoniazid and was found to be protective against damage. This suggests that BML-257 has the potential to protect against multiple kinds of DILI.


Subject(s)
Chemical and Drug Induced Liver Injury , Zebrafish , Acetaminophen/metabolism , Animals , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Hepatocytes , Liver/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...