Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proteomics Clin Appl ; 17(1): e2200009, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35925648

ABSTRACT

In the present study, a targeted multiple reaction monitoring-mass spectrometry (MRM-MS) approach was developed to screen and identify protein biomarkers for brucellosis in humans and livestock. The selection of proteotypic peptides was carried out by generating in silico tryptic peptides of the Brucella proteome. Using bioinformatics analysis, 30 synthetic peptides corresponding to 10 immunodominant Brucella abortus proteins were generated. MRM-MS assays for the accurate detection of these peptides were optimized using 117 serum samples of human and livestock stratified as clinically confirmed (45), suspected (62), and control (10). Using high throughput MRM assays, transitions for four peptides were identified in several clinically confirmed and suspected human and livestock serum samples. Of these, peptide NAIYDVVTR corresponding to B. abortus proteins: BruAb2_0537 was consistently detected in the clinically confirmed serum samples of both humans and livestock with 100% specificity. To conclude, a high throughput MRM-MS-based protocol for detecting endogenous B. abortus peptides in serum samples of humans and livestock was developed. The developed protocol will help design sensitive assays to accurately diagnose brucellosis in humans and livestock. The data associated with this study are deposited in Panorama Public (https://panoramaweb.org/rNOZCy.url with ProteomeXchange ID: PXD034407).


Subject(s)
Brucella abortus , Brucellosis , Animals , Humans , Brucella abortus/metabolism , Livestock , Brucellosis/diagnosis , Mass Spectrometry , Peptides/metabolism
2.
Curr Microbiol ; 80(1): 20, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36460801

ABSTRACT

In the present study, a comprehensive proteomic analysis of Brucella melitensis (B. melitensis) strain ATCC23457 was carried out to investigate proteome alterations in response to in vitro-induced nutrient stress. Our analysis resulted in the identification of 2440 proteins, including 365 hypothetical proteins and 850 potentially secretory proteins representing ~77.8% of the B. melitensis proteome. Utilizing a proteogenomics approach, we provide translational evidence for eight novel putative protein-coding genes and confirmed the coding potential of 31 putatively annotated pseudogenes, thus refining the existing genome annotation. Further, using a label-free quantitative proteomic approach, new insights into the cellular processes governed by nutrient stress, including enrichment of amino acid metabolism (E), transcription (K), energy production and conversion (C), and biogenesis (J) processes were obtained. Pathway analysis revealed the enrichment of survival and homeostasis maintenance pathways, including type IV secretion system, nitrogen metabolism, and urease pathways in response to nutrient limitation. To conclude, our analysis demonstrates the utility of in-depth proteomic analysis in enabling improved annotation of the B. melitensis genome. Further, our results indicate that B. melitensis undergoes metabolic adaptations during nutrient stress similar to other Brucella. sp, and adapts itself for long-term persistence and survival.


Subject(s)
Brucella melitensis , Proteomics , Brucella melitensis/genetics , Proteome , Acclimatization , Nutrients
3.
Malays J Med Sci ; 27(6): 15-26, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33447131

ABSTRACT

BACKGROUND: Human brucellosis is an important zoonotic disease of public health and often remains neglected owing to lack of sensitive and efficient diagnostic methods. This study evaluates diagnostic utility of in-house designed enzyme-linked immunosorbent assay (ELISA) using whole-cell antigens of Brucella abortus (B. abortus) S19 against the commercially available kits. METHODS: A prospective cohort study involving different populations within the Vidarbha regions of Maharashtra, India was conducted through camps organised from May 2009 to October 2015. A total of 568 serum samples were collected from high-risk people recruited as study cohorts based on inclusion criteria, additional risk factors and clinical symptoms. Samples were evaluated by indirect ELISA using the whole-cell antigens of B. abortus. The results were compared with the commercially available IgG detection ELISA kit to ascertain the specificity and sensitivity of the developed test. RESULTS: Fever, body ache, joint pain, lower back pain, loss of appetite and weight loss were major symptoms associated with the disease. With the cut-off of > 0.8, the positivity of brucellosis infection was at 12.32% (70/568) compared to 9.33% (53/568) as detected by the commercial kit. The in-house developed ELISA method yielded a sensitivity of 87.5% and specificity of 99.18% as compared to the commercial kits (sensitivity -80.30% and specificity -99.6%). DISCUSSION: The B. abortus S19-derived whole-cell protein-based ELISA is rapid and cost-effective and can be used for screening brucellosis infection in lieu of the commercially available ELISA kits.

4.
Genome Announc ; 6(7)2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29449397

ABSTRACT

We report here the draft genome sequence of Listeria monocytogenes CIIMS-PH-1, an isolate obtained from a 16-day-old infant with septicemia. The draft genome of CIIMS-PH-1 consisted of 2,939,183 bp and is a member of sequence type 308, clonal complex 1, and lineage I.

SELECTION OF CITATIONS
SEARCH DETAIL
...