Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(50): 11400-11411, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38079360

ABSTRACT

The presence of transition-metal single-atom catalysts effectively enhances the interaction between the substrate and reactant molecules, thus exhibiting extraordinary catalytic performance. In this work, we for the first time report a facile synthetic procedure for placing highly dispersed Ru single atoms on stable CNF(ZnO) nanocages. We unravel the atomistic nature of the Ru single atoms in CNF(ZnO)/Ru systems using advanced HAADF-STEM, HRTEM, and XANES analytical methods. Density functional theory calculations further support the presence of ruthenium single-atom sites in the CNF(ZnO)/Ru system. Our work further demonstrates the excellent photocatalytic ability of the CNF(ZnO)/Ru system with respect to H2 production (5.8 mmol g-1 h-1) and reduction of CO2 to CH3OH [249 µmol (g of catalyst)-1] with apparent quantum efficiencies of 3.8% and 1.4% for H2 and CH3OH generation, respectively. Our studies unambiguously demonstrate the presence of atomically dispersed ruthenium sites in CNF(ZnO)/Ru catalysts, which greatly enhance charge transfer, thus facilitating the aforementioned photocatalytic redox reactions.

2.
ACS Appl Mater Interfaces ; 15(48): 55822-55836, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37994833

ABSTRACT

Defect engineering through modification of their surface linkage is found to be an effective pathway to escalate the solar energy conversion efficiency of metal-organic frameworks (MOFs). Herein, defect engineering using controlled decarboxylation on the NH2-UiO-66 surface and integration of ultrathin NiCo-LDH nanosheets synergizes the hydrogen evolution reaction (HER) under a broad visible light regime. Diversified analytical methods including positron annihilation lifetime spectroscopy were employed to investigate the role of Zr3+-rich defects by analyzing the annihilation characteristics of positrons in NH2-UiO-66, which provides a deep insight into the effects of structural defects on the electronic properties. The progressively tuned photophysical properties of the NiCo-LDH@NH2-UiO-66-D-heterostructured nanocatalyst led to an impressive rate of HER (∼2458 µmol h-1 g-1), with an apparent quantum yield of ∼6.02%. The ultrathin NiCo-LDH nanosheet structure was found to be highly favored toward electrostatic self-assembly in the heterostructure for efficient charge separation. Coordination of Zr3+ on the surface of the NiCo-LDH nanosheet support through NH2-UiO-66 was confirmed by X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy techniques. Femtosecond transient absorption spectroscopy studies unveiled a photoexcited charge migration process from MOF to NiCo-LDH which favorably occurred on a picosecond time scale to boost the catalytic activity of the composite system. Furthermore, the experimental finding and HER activity are validated by density functional theory studies and evaluation of the free energy pathway which reveals the strong hydrogen binding over the surface and infers the anchoring effect of the ultrathin layered double hydroxide (LDH) in the vicinity of the Zr cluster with a strong host-guest interaction. This work provided a novel insight into efficient photocatalysis via defect engineering at the linker modulation in MOFs.

3.
J Phys Chem Lett ; 14(48): 10832-10846, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38029290

ABSTRACT

Tandem hydrogenation vis-à-vis hydrogenolysis of xylose to 1,2-glycols remains a major challenge. Although one-pot conversion of xylose to 1,2-glycols requires stringent conditions, a sustainable approach would be quite noteworthy. We have developed a microwave route for the one-pot conversion of pentose (C5) and hexose (C6) sugars into glycol and hexitol, without pressurized hydrogen reactors. A pronounced hydrogenolysis of sugars to glycols is observed by Ru single atom (SA) on triphenylphosphine/phosphine oxide-modified silica (Ru@SiP), in contrast to Ru SA on pristine (Ru@SiC) and 3-aminopropyl-modified silica (Ru@SiN). A promising "ligand effect" was observed through phosphine modification of silica that presents a 70% overall yield of all reduced sugars (xylitol + glycols) from a 99% conversion of xylose with Ru@SiP. A theoretical study by DFT depicts an electronic effect on Ru-SA by triphenylphosphine that promotes the catalytic hydrogenolysis of sugars under mild conditions. Hence, this research represents an important step for glycols from biomass-derived sources.

4.
Nanoscale ; 14(42): 15875-15888, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36263781

ABSTRACT

Atomically dispersed metal-single-atoms have become a frontier in solid catalysis due to their characteristic electronic properties. However, for biomass conversion, employing metal-single-atoms as catalysts is rather challenging since they suffer from poor selectivity and yield due to inadequate metal-support interactions. We show here that Ru/triphenylphosphine (PPh)-based ordered mesoporous polymers afford high yields of reduced sugars, xylitol (yield ∼95%) and sorbitol (yield ∼65%) in a microwave reactor with formic acid as the only hydrogen donor. We have established a unique relationship within Ru/triphenylphosphine that shows an important ligand effect, in contrast to, Ru/triphenylamine and Ru/catechol. The tailored electronic properties in Ru/phosphine were thoroughly examined by using state-of-the-art experimental techniques viz. EXAFS, XANES, XPS, DRIFTS and HAADF-STEM. The resulting phosphine-modified catalysts show a promotion in activity and selectivity towards less vulnerable aldehydes for hydrogenation, further confirmed by DFT calculations. This finding reveals a new protocol to tailor the activity of metal-single-atoms utilizing functional porous polymers as nanoreactors.

SELECTION OF CITATIONS
SEARCH DETAIL
...