Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Environ ; 46(4): 1207-1231, 2023 04.
Article in English | MEDLINE | ID: mdl-36404527

ABSTRACT

F-box (FB) proteins that form part of SKP1-CUL1-F-box (SCF) type of E3 ubiquitin ligases are important components of plant growth and development. Here we characterized OsFBX257, a rice FB protein-coding gene that is differentially expressed under drought conditions and other abiotic stresses. Population genomics analysis suggest that OsFBX257 shows high allelic diversity in aus accessions and has been under positive selection in some japonica, aromatic and indica cultivars. Interestingly, allelic variation at OsFBX257 in aus cultivar Nagina22 is associated with an alternatively spliced transcript. Conserved among land plants, OsFBX257 is a component of the SCF complex, can form homomers and interact molecularly with the 14-3-3 rice proteins GF14b and GF14c. OsFBX257 is co-expressed in a network involving protein kinases and phosphatases. We show that OsFBX257 can bind the kinases OsCDPK1 and OsSAPK2, and that its phosphorylation can be reversed by phosphatase OsPP2C08. OsFBX257 expression level modulates root architecture and drought stress tolerance in rice. OsFBX257 knockdown (OsFBX257KD ) lines show reduced total root length and depth, crown root number, panicle size and survival under stress. In contrast, its overexpression (OsFBX257OE ) increases root depth, leaf and grain length, number of panicles, and grain yield in rice. OsFBX257 is a promising breeding target for alleviating drought stress-induced damage in rice.


Subject(s)
F-Box Proteins , Oryza , Oryza/genetics , Plant Proteins/metabolism , Droughts , Adaptation, Physiological/genetics , Stress, Physiological/genetics , F-Box Proteins/metabolism , Gene Expression Regulation, Plant
2.
Plant Physiol Biochem ; 161: 98-112, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33581623

ABSTRACT

Plants have evolved a complex network of components that sense and respond to diverse signals. In the present study, we have characterized OsRR6, a type-A response regulator, which is part of the two-component sensor-regulator machinery in rice. The expression of OsRR6 is induced by exogenous cytokinin and various abiotic stress treatments, including drought, cold and salinity stress. Organ-specific expression analysis revealed that its expression is high in anther and low in shoot apical meristem. The Arabidopsis plants constitutively expressing OsRR6 (OsRR6OX) exhibited reduced cytokinin sensitivity, adventitious root formation and enhanced anthocyanin accumulation in seeds. OsRR6OX plants were more tolerant to drought and salinity conditions when compared to wild-type. The hypocotyl growth in OsRR6OX seedlings was significantly inhibited under red, far-red and blue-light conditions and also a decline in transcript levels of OsRR6 was observed in rice under the above monochromatic as well as white light treatments. Transcriptome profiling revealed that the genes associated with defense responses and anthocyanin metabolism are up-regulated in OsRR6OX seedlings. Comparative transcriptome analysis showed that the genes associated with phenylpropanoid and triterpenoid biosynthesis are enriched among differentially expressed genes in OsRR6OX seedlings of Arabidopsis, which is in conformity with reanalysis of the transcriptome data performed in rice transgenics for OsRR6. Further, genes like DREB1A/CBF3, COR15A, KIN1, ERD10 and RD29A are significantly upregulated in OsRR6OX seedlings when subjected to ABA and abiotic stress treatments. Thus, a negative regulator of cytokinin signaling, OsRR6, plays a positive role in imparting abiotic stress tolerance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Oryza , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cytokinins , Droughts , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...