Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(34): 46979-46993, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38985420

ABSTRACT

Skin homeostasis is predominantly compromised by exposure to UV-B irradiation, leading to several physiopathological processes at cellular and tissue levels that deteriorate skin function and integrity. The current study investigated the photo-protective role of seabuckthorn fruit pulp (SBT) extract against UV-B-induced damage in primary human skin fibroblasts (HDFs) and Balb/C mice skin. We subjected HDFs and Balb/C mice to UV-B irradiation and measured multiple cellular damage indicators. We found that UV-B-irradiated HDFs treated with SBT had a considerably greater survival rate than cells exposed to UV-B radiation alone. The UV-B irradiation-induced ROS generation led to the degradation of the extracellular matrix, inflammation, DNA damage, endoplasmic reticulum (ER) stress, and apoptosis. SBT treatment significantly reduced these manifestations. Topical application of SBT alleviated UV-B-induced epidermal thickening, leukocyte infiltration, and degradation of extracellular matrix in Balb/c mice skin. Based on our results, we conclude that SBT has the potential to be developed as a therapeutic/cosmetic remedy for the prevention of skin photo-damage.


Subject(s)
DNA Damage , Endoplasmic Reticulum Stress , Fibroblasts , Hippophae , Mice, Inbred BALB C , Oxidative Stress , Plant Extracts , Skin , Ultraviolet Rays , Animals , Mice , Hippophae/chemistry , Fibroblasts/drug effects , Humans , Plant Extracts/pharmacology , Skin/drug effects , Oxidative Stress/drug effects , Endoplasmic Reticulum Stress/drug effects
2.
J Photochem Photobiol B ; 256: 112944, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796981

ABSTRACT

Ultraviolet-B (UV-B) irradiation has been reported to cause oxidative stress and inflammation-mediated skin photo-damage. Furthermore, mitochondrial dynamics have been implicated to play a critical role in these processes. For the first time, we describe in this study how UVB-induced aberrant mitochondrial dynamics and inflammation interact in primary human dermal fibroblasts (HDFs). Our findings demonstrated that UV-B irradiation induced -impairment in mitochondrial dynamics by increasing mitochondrial fragmentation in HDFs. Imbalanced mitochondrial dynamics lead to the activation of NFкB and pro-inflammatory cytokines. The current study further aimed to investigate the protective effect of Naringenin (a naturally occurring flavonoid isolated from Sea buckthorn fruit pulp) against UV-B-induced mitochondrial fragmentation and inflammation in HDFs and Balb/c mice. Although Naringenin has been shown to have anti-inflammatory and antioxidant potential, its effects and mechanisms of action on UVB-induced inflammation remained unclear. We observed that Naringenin restored the UV-B-induced imbalance in mitochondrial fission and fusion in HDFs. It also inhibited the phosphorylation of NFкB and reduced the generation of pro-inflammatory cytokines. Naringenin also alleviated UV-B-induced oxidative stress by scavenging the reactive oxygen species and up-regulating the cellular antioxidant enzymes (Catalase and Nrf2). Topical application of Naringenin to the dorsal skin of Balb/c mice exposed to UV-B radiation prevented mitochondrial fragmentation and progression of inflammatory responses. Naringenin treatment prevented neutrophil infiltration and epidermal thickening in mice's skin. These findings provide an understanding for further research into impaired mitochondrial dynamics as a therapeutic target for UV-B-induced inflammation. Our findings imply that Naringenin could be developed as a therapeutic remedy against UVB-induced inflammation.


Subject(s)
Fibroblasts , Flavanones , Hippophae , Inflammation , Mice, Inbred BALB C , Mitochondrial Dynamics , Plant Extracts , Skin , Ultraviolet Rays , Animals , Flavanones/pharmacology , Flavanones/chemistry , Flavanones/therapeutic use , Ultraviolet Rays/adverse effects , Humans , Fibroblasts/metabolism , Fibroblasts/drug effects , Mice , Skin/radiation effects , Skin/drug effects , Skin/pathology , Skin/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Hippophae/chemistry , Mitochondrial Dynamics/drug effects , Mitochondrial Dynamics/radiation effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , NF-kappa B/metabolism , Cytokines/metabolism , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Mitochondria/metabolism , Mitochondria/drug effects
3.
Chem Res Toxicol ; 37(2): 274-284, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38271289

ABSTRACT

Cutaneous pigmentation is an important phenotypic trait whose regulation, despite recent advances, has yet to be completely elucidated. Melanogenesis, a physiological process of melanin production, is imperative for organism survival as it provides protection against the environmental insults that majorly involve sunlight-induced skin photodamage. However, immoderate melanin synthesis can cause pigmentation disorders associated with a psychosocial impact. In this study, the hypopigmentation effect of (2-methylbutyryl)shikonin, a natural product present in the root extract of Lithospermum erythrorhizon, and the underlying mechanisms responsible for the inhibition of melanin synthesis in α-MSH-stimulated B16F10 cells and C57BL/6J mice was studied. Non-cytotoxic concentrations of (2-methylbutyryl)shikonin significantly repressed cellular tyrosinase activity and melanin synthesis in both in vitro and in vivo models (C57BL/6J mice). (2-Methylbutyryl)shikonin remarkably abolished the protein expression of MITF, tyrosinase, tyrosinase-related protein 1, and tyrosinase-related protein 2, thereby blocking the production of pigment melanin via modulating the phosphorylation status of MAPK proteins, viz., ERK1/2 and p38. In addition, specific inhibition of ERK1/2 attenuated the inhibitory effects of (2-methylbutyryl)shikonin on melanin synthesis, whereas selective inhibition of p38 augmented the inhibitory effect of BSHK on melanin synthesis. Moreover, topical application of (2-methylbutyryl)shikonin on C57BL/6J mouse tails remarkably induced tail depigmentation. In conclusion, with these findings, we, for the first time, report the hypopigmentation effect of (2-methylbutyryl)shikonin via inhibition of cellular tyrosinase enzyme activity, subsequently ameliorating the melanin production, thereby indicating that (2-methylbutyryl)shikonin is a potential natural therapy for hyperpigmentation disorders.


Subject(s)
Hypopigmentation , Melanoma, Experimental , Naphthoquinones , Animals , Mice , p38 Mitogen-Activated Protein Kinases/metabolism , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Down-Regulation , Microphthalmia-Associated Transcription Factor/metabolism , Microphthalmia-Associated Transcription Factor/pharmacology , alpha-MSH/pharmacology , alpha-MSH/metabolism , Signal Transduction , Melanogenesis , Melanins/metabolism , MAP Kinase Signaling System , Cell Line, Tumor , Mice, Inbred C57BL , Melanoma, Experimental/drug therapy
4.
Food Chem Toxicol ; 180: 114038, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37714449

ABSTRACT

Steatohepatitis is a significant risk factor for end-stage liver disease. In this study, the therapeutic potential of Glabridin (GBD), an isoflavan derived from Glycyrrhiza glabra, is investigated in in-vitro and in-vivo models against palmitic acid (PA) or fast food (FF) diet + alcohol (EtOH). Mouse hepatocytes (AML-12 cells) were treated with PA; 250 µM + EtOH; 250 µM ± GBD (10 µM and 25 µM) for 24 h. C57BL/6J mice fed with standard chow (SC) diet, fast food (FF) diet + intermittent oral ingestion of EtOH (10-50%v/v) ± GBD (20 mg/kg and 40 mg/kg) for eight (8) weeks, were analyzed for histological features of steatohepatitis and fibrosis, biochemical indexes, and protein and gene expression studies related to oxidative stress, inflammation, lipogenesis, fibrosis, and apoptosis. GBD therapy considerably reduced intracellular events in AML-12 cells exposed to PA + EtOH. GBD treatments significantly improved body metrics, biochemical indexes, and histological features in C57BL/6J mice compared to FF + EtOH. Moreover, protein and gene expression investigations revealed a strong therapeutic effects on oxidative stress, inflammation, steatosis, fibrosis, and apoptosis -related molecular signaling cascades. In conclusion, these findings suggest that GBD has a strong therapeutic potential to be developed as anti-steatohepatitis/fibrosis medicine.

5.
RSC Adv ; 13(16): 11130-11141, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37056972

ABSTRACT

Melanoma, the most serious yet uncommon type of cancer, originates in melanocytes. Risk factors include UV radiation, genetic factors, tanning lamps and beds. Here, we described the synthesis and selective anti melanoma activity of [3,2-b]indole fused 18ß-glycyrrhetinic acid, a derivative of 18ß-glycyrrhetinic acid in murine B16F10 and A375 human melanoma cell lines. Among the 14 molecules, GPD-12 showed significant selective cytotoxic activity against A375 and B16F10 cell lines with IC50 of 13.38 µM and 15.20 µM respectively. GPD 12 induced the formation of reactive oxygen species in A375 cells that could trigger oxidative stress mediated cell death as is evident from the increased expression of apoptosis related proteins such as caspase-9 and caspase-3 and the increased ratio of Bax to Bcl2. The results showed that GPD 12 can be used as an effective therapeutic agent against melanoma.

6.
Exp Dermatol ; 32(6): 799-807, 2023 06.
Article in English | MEDLINE | ID: mdl-36811401

ABSTRACT

Chronic exposure to Ultraviolet B radiation (UV-B) evokes a myriad of toxic signalling events in the irradiated skin. One of such response is ER stress, which is known to exacerbate photodamage responses. Also, recent literature has highlighted the adverse impact of environmental toxicants on mitochondrial dynamics and mitophagy. Impaired mitochondrial dynamics escalates oxidative damage and causes apoptosis. There have been evidences that support crosstalk between ER stress and mitochondrial dysfunction. However, mechanistic clarification is still needed to verify the interactions between UPR responses and mitochondrial dynamics impairment in UV-B-induced photodamage models. Lastly, plant-based natural agents have garnered attention as therapeutic agents against skin photodamage. Thus, gaining mechanistic insights of plant-based natural agents is required for their application and feasibility in clinical settings. With this aim in view, this study was performed in primary human dermal fibroblasts (HDFs) and Balb/C mice. Different parameters regarding mitochondrial dynamics, ER stress, intracellular damage and histological damage were analyzed using western blot, rt-PCR and microscopy. We demonstrated that UV-B exposure leads to induction of UPR responses, upregulation of Drp-1 and inhibition of mitophagy. Further, 4-PBA treatment leads to reversal of these noxious stimuli in irradiated HDF cells, thereby, indicating an upstream role of UPR induction in mitophagy inhibition. Also, we explored the therapeutic effect of Rosmarinic acid (RA) against ER stress and impaired mitophagy in photodamage models. RA prevents intracellular damage via alleviation of ER stress and mitophagic responses in HDFs and irradiated Balb/C mice skin. The current study summarizes the mechanistic insights into UVB-mediated intracellular damage and role of natural plant-based agent (RA) in ameliorating these toxic responses.


Subject(s)
Skin Aging , Animals , Mice , Humans , Reactive Oxygen Species/metabolism , Skin/pathology , Ultraviolet Rays/adverse effects , Mitochondria , Fibroblasts/metabolism , Rosmarinic Acid
SELECTION OF CITATIONS
SEARCH DETAIL