Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(11): 12725-12733, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38524463

ABSTRACT

Various plant-based materials effectively absorb oil contaminants at the water/air interface. These materials showcase unparalleled efficiency in purging oil contaminants, encompassing rivers, lakes, and boundless oceans, positioning them as integral components of environmental restoration endeavors. In addition, they are biodegradable, readily available, and eco-friendly, thus making them a preferable choice over traditional oil cleaning materials. This study explores the phenomenal properties of the floating Azolla fern (Azolla pinnata), focusing on its unique hierarchical leaf surface design at both the microscale and nanoscale levels. These intricate structures endow the fern with exceptional characteristics, including superhydrophobicity, high water adhesion, and remarkable oil or organic solvent absorption capabilities. Azolla's leaf surface exhibits a rare combination of dual wettability, where hydrophilic spots on a superhydrophobic base enable the pinning of water droplets, even when positioned upside-down. This extraordinary property, known as the parahydrophobic state, is rare in floating plants, akin to the renowned Salvinia molesta, setting Azolla apart as a natural wonder. Submerged in water, Azolla leaves excel at absorbing light oils at the air-water interface, demonstrating a notable ability to extract high-density organic solvents. Moreover, Azolla's rapid growth, doubling in the area every 4-5 days, especially in flowing waters, positions it as a sustainable alternative to traditional synthetic oil-cleaning materials with long-term environmental repercussions. This scientific lead could pave the way for more environmentally friendly approaches to mitigate the negative impacts of oil spills and promote a cleaner water ecosystem.

2.
ACS Appl Mater Interfaces ; 16(10): 13225-13233, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38407994

ABSTRACT

The development of a Janus membrane with contrasting chemical functionality/or wettability on opposite faces has shown great promise as a passive and energy-efficient oil/water separation technology. Notably, one side of the membrane is designed hydrophilic (i.e., water-attracting in air and underwater oleophobic) and the other hydrophobic (i.e., water-repelling in air and underwater oleophilic). The distinctive surface wettability features of the membrane allow it to repel water and attract oil without consuming energy, thus making it an attractive technology for passively separating oil/water mixtures. The hydrophobic face of the membrane captures oil droplets while allowing water to pass through, and the hydrophilic side attracts water droplets and allows oil to pass. Nonetheless, crafting a Janus membrane is complex, tedious, and expensive. To overcome these limitations, an easy and inexpensive two-step fabrication process for the Janus membrane is proposed in this work. The first step involves creating a superhydrophilic face by the hydrothermally guided deposition of nanoneedles on either side of a commercially available hydrophobic carbon sheet. In the second step, the double-faced surface is subjected to a pulsed laser to create conical micropores studied for oil/water separation. The fabricated membrane is economically affordable and environment friendly. Besides being energy-efficient (as the separation process works passively), the membrane demonstrates an efficient oil/water separating performance. The potential application of this work is diverse and impactful, encompassing wastewater treatment, oil spill cleanup, and various industrial separation processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...