Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 195(6): 689, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37198342

ABSTRACT

Landfills are commonly seen as the most cost-efficient and practical approach to waste management in various regions around the world. Nonetheless, the infiltration of hazardous materials from poorly managed dumping sites remains a significant environmental issue in most developing countries such as India. Leachate serves as a prominent point source of contamination in many environmental media like soil, groundwater, and surface water around the world. So the prime issues humans are experiencing are associated with water quality. Thus, the investigation was undertaken to assess the impact of leachate from the Achan landfill on surface water quality in the Temperate Himalayas. Monitoring was done during in all four seasons, viz., spring, summer, autumn, and winter. Among the sites, the leachate outflow site was found to have the highest mean value of pH (7.95), EC (2.16 dS/m), total nitrogen (2.64 mg/l), P (4.75 mg/l), K (1.41 mg/l), Ca (107.45 mg/l), Mg (54.93 mg/l), Zn (0.8 mg/l), Fe (1.78 mg/l), Cu (0.66 mg/l), Mn (0.81 mg/l), BOD (21.47 mg/l), COD (66.24 mg/l), temperature (14.22 °C), turbidity (14.29 NTU), while lowest mean values of all parameters were recorded at control site. Among the seasons, summer season was found to have maximum value of pH (7.9), EC (2.36 dS/m), total nitrogen (2.54 mg/l), P (4.0 mg/l), K (0.89 mg/l), Ca (85.94 mg/l), Mg (43.91 mg/l), Fe (1.4 mg/l), Cu (0.52 mg/l), Mn (0.64 mg/l), BOD (22.82 mg/l), COD (65.87 mg/l), temperature (18.99 °C), and turbidity (8.49 NTU). The maximum mean value of Zn (0.66 mg/l) was recorded during winter season, while other parameters were found to be minimum during winter season. From this study, we concluded that a decreasing trend was observed during all the seasons in the concentration of all physico-chemical parameters with an increase in distance from the landfill. So it is recommended that the leachate should be treated at the source before disposing into the water body and the landfill should be lined properly to prevent the entry of leachate into water sources.


Subject(s)
Refuse Disposal , Water Pollutants, Chemical , Humans , Water Quality , Water Pollutants, Chemical/analysis , Environmental Monitoring , Waste Disposal Facilities , Nitrogen
2.
Environ Sci Pollut Res Int ; 30(9): 23898-23907, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36331740

ABSTRACT

Human interference is rising day by day which adds more problems to conserve valuable forest resources. Vehicular exhausts are the main source of heavy metals that have detrimental impacts on the vegetation. The research provides comprehension about the increase in vehicular traffic along the Pahalgam highway, which is disturbing the balance of the forest ecosystem. The concentration of heavy metals and leaf pigments were determined in the leaf tissues collected along with the roadside pine trees in the Pahalgam resort. A total of 25 samples at each sampling site were collected in 100 m diameter along main road. High vehicular movements in summer correlated with the high accumulation of heavy metals such as Pb2+ (0.563 mg/kg), Ni2+ (0.271 mg/kg), and Cu2+ (0.202 mg/kg) in pine needles. However, Zn2+ exhibited higher concentration (0.468 mg/kg) at Batakote and Cd2+ (0.05 mg/kg) at Pahalgam in autumn. Moreover, total chlorophyll content determined low (1.97 mg/g) at Pahalgam in autumn and high (3.81 mg/g) at Chandanwari in summer. In general, the chlorophyll content in the pine needles was certainly affected by the accumulation of heavy metals which indicating a negative correlation of chlorophyll content with heavy metals. Thus, the increase in traffic movement and tourist influx significantly affects the accumulation of heavy metals and decreases the pigment content in the pine needles. Rapid tourist influx in world-famous health resorts is dramatically influencing the forest ecosystem. Therefore, the need is to use green fuel or ban the old vehicles which can be helpful in maintaining the balance of the forest ecosystem.


Subject(s)
Metals, Heavy , Pinus , Soil Pollutants , Humans , Vehicle Emissions/analysis , Ecosystem , Environmental Monitoring , Soil Pollutants/analysis , Metals, Heavy/analysis , Forests , Chlorophyll
3.
Environ Monit Assess ; 194(6): 393, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35482106

ABSTRACT

The present study was carried out to monitor the ambient concentrations of particulate matter and carbon dioxide caused by vehicular pollution in Srinagar City of Jammu and Kashmir, India, for a period of 12 months from June 2019 to May 2020 as the major contributions in these areas are due to vehicular movement. Out of five, four locations (viz. Dalgate, Jehangir Chowk, Parimpora and Pantha Chowk) had highest traffic density in the city and the fifth location (Shalimar) had low traffic volume. The sampling was done on every fortnight using AEROCET 831-aerosol mass monitor and CDM 901-CO2 monitor with each sampling being carried out three times a day, i.e. morning (9:00 am-10:30 am), afternoon (1:00 pm-2:30 pm) and evening (4:30 pm-6:00 pm) with three replications at each site based on the peak traffic hours. The results show that during the whole period, average PM1 concentrations ranged from 15.10 to 108.9 µg/m3, PM2.5 (28.70-577.50 µg/m3), PM4 (44.50-780.87 µg/m3), PM10 (57.13-1225.53 µg/m3), total suspended particulates (77.77-1410.27 µg/m3) and CO2 (332.4-655.0 ppm). The average concentrations of these parameters showed that the maximum PM1 concentration was found at Dalgate (53.77 µg/m3) and PM2.5 had its maximum average concentration at Jehangir Chowk (140.13 µg/m3). Other parameters like PM4, PM10, TSP and CO2 had a maximum average values at Jehangir Chowk (240.23 µg/m3, 633.40 µg/m3, 853.50 µg/m3 and 533.20 ppm, respectively). The pollution load was observed to be maximum during winter season followed by autumn, summer and spring. The lowest concentration of all pollutants except CO2 was observed in April 2020 and this might be due to COVID-19 lockdown observed in the country during the same period.


Subject(s)
Air Pollutants , COVID-19 , Air Pollutants/analysis , Carbon Dioxide , Communicable Disease Control , Environmental Monitoring/methods , Humans , Particulate Matter/analysis
4.
Environ Monit Assess ; 190(6): 353, 2018 May 22.
Article in English | MEDLINE | ID: mdl-29785575

ABSTRACT

In an effort to determine vehicular impact on soil quality, soil samples were collected from three different zones (Pahalgam, Batakote, and Chandanwari) in Pahalgam forest ecosystem. Results showed that a significant decrease in moisture content, organic carbon, available nitrogen, and potassium was observed in nearby road side soils. However, pH was observed to be on neutral side and available phosphorus recorded high concentration. The concentration of heavy metals Pb2+, Cu2+, Zn2+, Ni2+, and Cd2+ estimated was also significantly high. Furthermore, concentration of Pb2+ at high vehicular load subzones was observed to be highest (1.168 mg/Kg) followed by Zn2+ (0.896 mg/Kg), Ni2+ (0.649 mg/Kg), Cu2+ (0.415 mg/Kg), and Cd2+ (0.079 mg/Kg). An inter-zone analysis revealed that the concentration of the heavy metals (Pb2+ > Ni2+ > Cd2+) was observed to follow the trend, Z-I > Z-II > Z-III. Variation along the temporal gradient and the impact on soil qualities were notably higher in summer. Vehicular pollution to a great extent impacts physico-chemical characteristics and more interestingly adds substantial concentration of heavy metals in soils.


Subject(s)
Environmental Monitoring , Metals, Heavy/analysis , Soil Pollutants/analysis , Soil/chemistry , Vehicle Emissions , Ecosystem , India
SELECTION OF CITATIONS
SEARCH DETAIL
...