Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(5): 3096-3103, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38239440

ABSTRACT

Fuel candidates containing both petroleum-derived and biomass-derived molecules in their structural motifs ensure both feedstocks are used optimally and coherently. This work reports a straightforward and efficient preparation of 5-(arylmethyl)furfurals (AMFFs), 2-(arylmethyl)furans (AMFs), and 2-(arylmethyl)-5-methylfurans (AMMFs) as hybrid biofuels (or fuel oxygenates) starting from carbohydrate-derived 5-(acetoxymethyl)furfural (AcMF) and petroleum-derived aromatic hydrocarbons. The AMFFs were prepared by Friedel-Crafts reaction between AcMF and aromatic hydrocarbons (e.g., BTX, mesitylene) by employing anhydrous ZnCl2 as the catalyst. AMFs were prepared by decarbonylation of AMFFs over the Pd(OAc)2 catalyst under solvent-free conditions. In contrast, AMMFs were produced by hydrogenating AMFFs in methanol using gaseous hydrogen and the 10% Pd/C catalyst. The catalytic transformations were optimized on various parameters, and all the biofuel candidates were obtained in good to excellent isolated yields (>80%) under moderate conditions.

2.
ACS Omega ; 8(37): 34077-34083, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37744814

ABSTRACT

The Biginelli reaction provides 3,4-dihydropyrimidin-2(1H)-ones (DHPMs), whereas the Hantzsch reaction leads to 1,4-dihydropyridines (DHPs) by the one-pot, multicomponent, and operationally simple transformations starting from readily available starting materials. DHPMs and DHPs are well-established heterocyclic moieties in the synthetic organic chemistry literature and have pronounced pharmacological activities. This work reports the synthesis of novel DHPMs and DHPs from carbohydrate-derived 5-substituted-2-furaldehydes by employing gluconic acid aqueous solution (GAAS) as an efficient, inexpensive, and eco-friendly catalyst. The use of urea (or thiourea) as the reagent led to DHPMs, whereas ammonium acetate produced DHPs, selectively, keeping the other two starting materials (i.e., furfurals and ethyl acetoacetate) and the reaction parameters unaltered. Using the general synthetic protocol under optimized reaction conditions (60 °C, 3-6 h, 25 mol % GAAS cat.), all the DHPM and DHP derivatives were obtained in good to excellent isolated yields.

3.
ACS Omega ; 8(8): 8119-8124, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36873025

ABSTRACT

5-(Acyloxymethyl)furfurals (AMFs) have received considerable attention as hydrophobic, stable, and halogen-free congeners of 5-(hydroxymethyl)furfural (HMF) for synthesizing biofuels and biochemicals. In this work, AMFs have been prepared directly from carbohydrates in satisfactory yields using the combination of ZnCl2 as the Lewis acid catalyst and carboxylic acid as the Brønsted acid catalyst. The process was initially optimized for 5-(acetoxymethyl)furfural (AcMF) and then extended to producing other AMFs. The effects of reaction temperature, duration, loading of the substrate, and dosage of ZnCl2 on AcMF yield were explored. Fructose and glucose provided AcMF in 80% and 60% isolated yield, respectively, under optimized parameters (5 wt % substrate, AcOH, 4 equiv ZnCl2, 100 °C, 6 h). Finally, AcMF was converted into high-value chemicals, such as 5-(hydroxymethyl)furfural, 2,5-bis(hydroxymethyl)furan, 2,5-diformylfuran, levulinic acid, and 2,5-furandicarboxylic acid in satisfactory yields to demonstrate the synthetic versatility of AMFs as carbohydrate-derived renewable chemical platforms.

4.
RSC Adv ; 12(8): 4891-4912, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35425469

ABSTRACT

As the monomeric unit of the abundant biopolymer cellulose, glucose is considered a sustainable feedstock for producing carbon-based transportation fuels, chemicals, and polymers. The chemocatalytic value addition of glucose can be broadly classified into those involving C-C bond cleavage/formation reactions and those without. The C6 products obtained from glucose are particularly satisfying because their syntheses enjoy a 100% carbon economy. Although multiple derivatives of glucose retaining all six carbon atoms in their moiety are well-documented, they are somewhat dispersed in the literature and never delineated coherently from the perspective of their carbon skeleton. The glucose-derived chemical intermediates discussed in this review include polyols like sorbitol and sorbitan, diols like isosorbide, furanic compounds like 5-(hydroxymethyl)furfural, and carboxylic acids like gluconic acid. Recent advances in producing the intermediates mentioned above from glucose following chemocatalytic routes have been elaborated, and their derivative chemistry highlighted. This review aims to comprehensively understand the prospects and challenges associated with the catalytic synthesis of C6 molecules from glucose.

5.
ACS Omega ; 6(51): 35145-35172, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34984249

ABSTRACT

Furfural (FF) and 5-(hydroxymethyl)furfural (HMF) are well-recognized biomass-derived chemical building blocks with established applications and markets for several of their derivatives. Attaining a wide spectrum of petrochemicals is the primary target of a biorefinery that employs FF and HMF as the chemical feedstock. In this regard, cyclopentanone (CPN) is a crucial petrochemical intermediate used for synthesizing a diverse range of compounds with immense commercial prospects. The hydrogenative ring rearrangement of FF to CPN in an aqueous medium under catalytic hydrogenation conditions was first reported in 2012, whereas the first report on the catalytic conversion of HMF to 3-(hydroxymethyl)cyclopentanone (HCPN) was published in 2014. Over the past decade, several investigations have been undertaken in converting FF and HMF to CPN and HCPN, respectively. The research studies aimed to improve the scalability, selectivity, environmental footprint, and cost competitiveness of the process. A blend of theoretical and experimental studies has helped to develop efficient, inexpensive, and recyclable heterogeneous catalysts that work under mild reaction conditions while providing excellent yields of CPN and HCPN. The time is ripe to consolidate the data in this area of research and analyze them rigorously in a review article. This work will assist both beginners and experts of this field in acknowledging the accomplishments to date, recognize the challenges, and strategize the way forward.

6.
Carbohydr Res ; 496: 108105, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32777538

ABSTRACT

Furfural has been produced in 53% isolated yield from d-xylose within an aqueous HCl-1,2-dichloroethane biphasic reaction mixture using benzyltributylammonium chloride (BTBAC) as a phase transfer catalyst. The use of BTBAC noticeably improved the yield of furfural compared to that in the control reaction. The reaction was optimized on the reaction temperature, duration, concentration of HCl, and the loading of BTBAC. Furfural and 5-(chloromethyl)furfural (CMF) have also been coproduced from a mixture of pentose and hexose sugars. Under optimized conditions (100 °C, 3 h, 20.2% HCl, 10 wt% BTBAC), CMF and furfural were isolated in 17% and 53% yield, respectively, from a mixture of glucose and xylose. In addition, levulinic acid was isolated from the aqueous layer in 31% yield.


Subject(s)
Furaldehyde/analogs & derivatives , Furaldehyde/chemistry , Hydrochloric Acid/chemistry , Catalysis , Kinetics , Temperature , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...