Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Nutr ; 10(11): 3672-3679, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36348772

ABSTRACT

This study was conducted to assess the effect of two thermal treatments, viz. roasting and pan frying (deep frying), on nutritional profile, aflatoxin, and capsaicin content in green chilies. Green chilies were subjected to roasting and frying to reduce the aflatoxin contamination, besides retaining their pungency and nutritional profile. Reversed-phase HPLC was employed to determine the levels of aflatoxins B1, B2, G1, and G2 in thermally treated and control samples. The proximate compositions of roasted and fried chili samples were significantly (p ≤ .05) different from raw chili (control), except ash content. Vitamin A levels decreased significantly (p ≤ .05) during roasting and were undetected in fried chili samples. Likewise, vitamin C was undetected in both roasted and fried chili samples. Significantly decreasing (p ≤ .05) trends were noticed in capsaicinoids viz. capsaicin and dihydrocapsaicin contents including Scoville Heat Units (SHU) during roasting and frying. However, retention of capsaicinoids was higher in roasted chilies (730.00 ± 4.90 mg/kg) than fried samples (502.56 ± 5.10 mg/kg). The levels of all the four major aflatoxins (AFs)- AFB1, AFB2, AFG1, and AFG2 recorded in control were much higher than the limits prescribed by the European Union for spices. Both thermal treatments (roasting and frying) employed proved to be effective in reducing aflatoxins like AFB2, AFG1, and AFG2 in chilies to below the prescribed limits, while as the level of AFB1 was reduced below the limits by only the frying method. This study therefore indicated the substantial impact of frying on aflatoxins.

2.
Environ Sci Pollut Res Int ; 29(55): 83321-83346, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35763134

ABSTRACT

Dams significantly impact river hydrology by changing the timing, size, and frequency of low and high flows, resulting in a hydrologic regime that differs significantly from the natural flow regime before the impoundment. For precise planning and judicious use of available water resources for agricultural operations and aquatic habitats, it is critical to assess the dam water's temperature accurately. The building of dams, particularly several dams in rivers, can significantly impact downstream water. In this study, we predict the daily water temperature of the Yangtze River at Cuntan. Thus, this work reveals the potential of machine learning models, namely, M5 Pruned (M5P), Random Forest (RF), Random Subspace (RSS), and Reduced Error Pruning Tree (REPTree). The best and effective input variables combinations were determined based on the correlation coefficient. The outputs of the various machine learning algorithm models were compared with recorded daily water temperature data using goodness-of-fit criteria and graphical analysis to arrive at a final comparison. Based on a number of criteria, numerical comparison between the models revealed that M5P model performed superior (R2 = 0.9920, 0.9708; PCC = 0.9960, 0.9853; MAE = 0.2387, 0.4285; RMSE = 0.3449, 0.4285; RAE = 6.2573, 11.5439; RRSE = 8.0288, 13.8282) in pre-impact and post-impact spam, respectively. These findings suggest that a huge wave of dam construction in the previous century altered the hydrologic regimes of large and minor rivers. This study will be helpful for the ecologists and river experts in planning new reservoirs to maintain the flows and minimize the water temperature concerning spillway operation. Finally, our findings revealed that these algorithms could reliably estimate water temperature using a day lag time input in water level. They are cost-effective techniques for forecasting purposes.


Subject(s)
Hydrology , Rivers , Temperature , Machine Learning , Water
3.
Chemosphere ; 303(Pt 1): 134788, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35504464

ABSTRACT

Rapid industrialization, increased waste production and surge in agricultural activities, mining, contaminated irrigation water and industrial effluents contribute to the contamination of water resources due to heavy metal (HM) accumulation. Humans employ HM-contaminated resources to produce food, which eventually accumulates in the food chain. Decontamination of these valuable resources, as well as avoidance of additional contamination has long been needed to avoid detrimental health impacts. Phytoremediation is a realistic and promising strategy for heavy metal removal from polluted areas, based on the employment of hyper-accumulator plant species that are extremely tolerant to HMs present in the environment/soil. Green plants are used to remove, decompose, or detoxify hazardous metals in this technique. For soil decontamination, five types of phytoremediation methods have been used viz. phytostabilization, phytodegradation, rhizofiltration, phytoextraction and phytovolatilization. Traditional phytoremediation methods, on the other hand, have significant limits in terms of large-scale application, thus biotechnological efforts to modify plants for HM phytoremediation ways are being explored to improve the efficacy of plants as HM decontamination candidates. It is relatively a new technology that is widely regarded as economic, efficient and unique besides being environment friendly. New metal hyperaccumulators with high efficiency are being explored and employed for their use in phytoremediation and phytomining. Therefore, this review comprehensively discusses different strategies and biotechnological approaches for the removal of various HM containments from the environment, with emphasis on the advancements and implications of phytoremediation, along with their applications in cleaning up various toxic pollutants. Moreover, sources, effects of HMs and factors affecting phytoremediation of HMs metals have also been discussed.


Subject(s)
Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Humans , Metals, Heavy/analysis , Plants/metabolism , Soil , Soil Pollutants/analysis , Water/metabolism
4.
Chemosphere ; 288(Pt 3): 132606, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34678350

ABSTRACT

Nanotechnology is being an emerging science for wastewater treatment requires more research emphasis and depth knowledge. For wastewater treatment, different forms of nanomaterials are used based on the type of contaminants and treatment efficiency desired. With the development in the field of nanomaterials, novel and emerging nanomaterials are coming into existence. The nanomaterials used for wastewater treatment can be carbon, single-walled carbon nanotubes, multiple walled carbon nanotubes, covalent organic frameworks, metal and metal oxide- based nanoparticles. Graphene based nanoparticles, their oxides (GO) and reduced graphene oxide (rGO) find tremendous applicability to be used in wastewater treatment purposes. Due to the introduction of graphene oxide nanoparticles in the adsorbent materials, their adsorption capacities have get enhanced and such materials have also improved the mechanical stability of the adsorbent. Ferric oxide shows greater adsorption capacities for organic pollutants. Furthermore, magnetic nano-powder confers a low adsorption capacity for phenols. Pyrrolidone reduced graphene oxide (PVP-RGO) nanoparticles have been used as adsorbents for the elimination of inorganic target contaminant copper, with great adsorption (1698 mg/g). The present study comprehensively reviews nanotechnology as a wastewater treatment strategy besides enlightening its safety issues and efficiency. The novelty of this article is that it highlights the overview of recent applications of various types of nanomaterials and research works releated to it. Such an approach will be helpful to get insights into technological advances, applications and future challenges of nanotechnology implementation for wastewater treatment.


Subject(s)
Graphite , Nanotubes, Carbon , Water Pollutants, Chemical , Water Purification , Adsorption , Nanotechnology , Wastewater
5.
Chemosphere ; 287(Pt 3): 132223, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34537459

ABSTRACT

Dumping waste materials into aquatic ecosystems leads to pollution, which directly and indirectly poses a danger to all life forms. Currently, huge quantities of wastes are generated at a global scale with varying constituents, including organic fractions, emerging contaminants and toxic metals. These wastes release concentrated contaminants (leachates), which are lethal for all ecosystems around the globe because they contain varying concentrations of chemical constituents with BOD5 and COD in the order of 2 × 104-2.7 × 104 mg/L, and 3.4 × 104-3.8 × 104 mg/L, respectively. Herein, in-depth knowledge of municipal solid waste dumping into the aquatic ecosystems, changes in physicochemical characteristics, availability of in-/organic contaminants, and long-term unhealthy effects are presented. Moreover, an attempt has been made here to summarize the facts related to identifying the deadly impacts of waste on different ecosystem components. The unresolved challenges of municipal waste management are emphasized, which will help employ suitable waste management techniques and technologies to conserve the everlasting freshwater resources on earth.


Subject(s)
Ecosystem , Solid Waste , Environmental Pollution , Fresh Water , Solid Waste/analysis
6.
Environ Sci Pollut Res Int ; 29(57): 85648-85657, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34599438

ABSTRACT

Coronavirus refers to a group of widespread viruses. The name refers to the specific morphology of these viruses because their spikes look like a crown under an electron microscope. The outbreak of coronavirus disease 2019 (COVID-19) that has been reported in Wuhan, China, in December 2019, was proclaimed an international public health emergency (PHEIC) on 30 January 2020, and on 11 March 2020, it was declared as a pandemic (World Health Organization 2020). The official name of the virus was declared by the WHO as "COVID-19 virus", formerly known as "2019-nCoV", or "Wuhan Coronavirus". The International Committee on Virus Taxonomy's Coronavirus Research Group has identified that this virus is a form of coronavirus that caused a severe outbreak of acute respiratory syndrome in 2002-2003 (SARS). As a result, the latest severe acute respiratory syndrome has been classified as a corona virus 2 (SARS-CoV-2) pathogen by this committee. This disease spread quickly across the country and the world within the first 3 months of the outbreak and became a global pandemic. To stop COVID-19 from spreading, the governing agencies used various chemicals to disinfect different commercial spaces, streets and highways. However, people used it aggressively because of panic conditions, anxiety and unconsciousness, which can have a detrimental impact on human health and the environment. Our water bodies, soil and air have been polluted by disinfectants, forming secondary products that can be poisonous and mutagenic. In the prevention and spread of COVID-19, disinfection is crucial, but disinfection should be carried out with sufficient precautions to minimize exposure to harmful by-products. In addition, to prevent inhalation, adequate personal protective equipment should be worn and chemical usage, concentrations, ventilation in the room and application techniques should be carefully considered. In the USA, 60% of respondents said they cleaned or disinfected their homes more often than they had in the previous months. In addition to the robust use of disinfection approaches to combat COVID-19, we will explore safe preventative solutions here.


Subject(s)
COVID-19 , Disinfectants , Humans , SARS-CoV-2 , Pandemics/prevention & control , Disease Outbreaks
7.
Food Sci Technol Int ; 28(7): 557-569, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34259077

ABSTRACT

This study aimed at investigating the influence of different postharvest treatments with oxalic acid (OA) and salicylic acid (SA) on quality attributes and postharvest shelf life of temperate grown apricot varieties stored under controlled atmosphere (CA) storage conditions. After each treatment was given, the samples were stored in CA store maintained at a temperature of 0 °C, 90 ± 5% relative humidity, 5% oxygen and 15% carbon dioxide for 30 days. Results indicated that both OA and SA treatments significantly (p ≤ 0.05) retained total soluble solids, titratable acidity, color profile, ascorbic acid content and total phenolic content of apricot varieties and had a positive effect on antioxidant activity and texture of samples compared to control. However, carotenoid content was found to be higher in control. Both the treatments reduced chilling injury index, weight loss and decay percentage of samples. Moreover, it was found that SA treatment was the most effective treatment in maintaining visual color of apricots while OA maintained fruit firmness and effectively decreased the decay percentage and chilling injury index of apricot varieties. In conclusion, it was found that both OA and SA have the potential to extend storage life of apricots and maintain quality attributes of the crop during CA storage.


Subject(s)
Prunus armeniaca , Prunus , Antioxidants , Ascorbic Acid , Atmosphere , Carbon Dioxide , Carotenoids , Fruit , Oxalic Acid , Oxygen , Salicylic Acid/pharmacology
8.
Chemosphere ; 292: 133320, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34952020

ABSTRACT

Food spoilage and safety are key concerns of the modern food sector. Among them, several types of polluting agents are the prime grounds of food deterioration. In this context, nanotechnology-based measures are setting new frontiers to strengthen food applications. Herein, we summarize the nanotechnological dimension of the food industry for both processing and packaging applications. Active bioseparation, smart delivery, nanoencapsulation, nutraceuticals, and nanosensors for biological detection are a few emerging topics of nanobiotechnology in the food sector. The development of functional foods is another milestone set by food nanotechnology by building the link between humans and diet. However, the establishment of optimal intake, product formulations, and delivery matrices, the discovery of beneficial compounds are a few of the key challenges that need to be addressed. Nanotechnology provides effective solutions for the aforementioned problem giving various novel nanomaterials and methodologies. Various nanodelivery systems have been designed, e.g., cochleate, liposomes, multiple emulsions, and polysaccharide-protein coacervates. However, their real applications in food sciences are very limited. This review also provides the status and outlook of nanotechnological systems for future food applications.


Subject(s)
Environmental Pollutants , Nanostructures , Food Industry , Food Safety , Food-Processing Industry , Humans , Nanotechnology
9.
Environ Res ; 195: 110839, 2021 04.
Article in English | MEDLINE | ID: mdl-33549623

ABSTRACT

The outbreak of COVID-19 pandemic has emerged as a major challenge from human health perspective. The alarming exponential increase in the transmission and fatality rates related to this disease has brought the world to a halt so as to cope up with its stern consequences. This has led to the imposition of lockdown across the globe to prevent the further spread of this disease. This lock down brought about drastic impacts at social and economic fronts. However, it also posed some positive impacts on environment as well particularly in the context of air quality due to reduction in concentrations of particulate matter (PM), NO2 and CO across the major cities of the globe as indicated by several research organizations. In China, Italy, France and Spain, there were about 20-30% reduction in NO2 emission while in USA 30% reduction in NO2 emission were observed. Compared to previous year, there was 11.4% improvement in the air quality in China. Drastic reductions in NO (-77.3%), NO2 (-54.3%) and CO (-64.8%) (negative sign indicating a decline) concentrations were observed in Brazil during partial lockdown compared to the five year monthly mean. In India there were about -51.84, -53.11, -17.97, -52.68, -30.35, 0.78 and -12.33% reduction in the concentration of PM10, PM2.5, SO2, NO2, CO, O3 and NH3 respectively. This article highlights the impact of lockdown on the environment and also discusses the pre and post lockdown air pollution scenario across major cities of the world. Several aspect of environment such as air, water, noise pollution and waste management during, pre and post lockdown scenario were studied and evaluated comprehensively. This research would therefore serve as a guide to environmentalist, administrators and frontline warriors for fighting our the way to beat this deadly disease and minimize its long term implications on health and environment.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Brazil , China , Cities , Climate Change , Communicable Disease Control , Environmental Monitoring , France , Humans , India , Italy , Pandemics , Particulate Matter/analysis , SARS-CoV-2 , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...