Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38047907

ABSTRACT

Cation incorporation emerges as a promising approach for improving the performance of the kesterite Cu2ZnSn(S,Se)4 (CZTSSe) device. Herein, we report indium (In) doping using the chemical bath deposition (CBD) technique to enhance the optoelectronic properties of CZTSSe thin-film solar cells (TFSCs). To incorporate a small amount of the In element into the CZTSSe absorber thin films, an ultrathin (<10 nm) layer of In2S3 is deposited on soft-annealed precursor (Zn-Sn-Cu) thin films prior to the sulfo-selenization process. The successful doping of In improved crystal growth and promoted the formation of larger grains. Furthermore, the CZTSSe TFSCs fabricated with In doping exhibited improved device performance. In particular, the In-CZTSSe-2-based device showed an improved power conversion efficiency (PCE) of 9.53%, open-circuit voltage (Voc) of 486 mV, and fill factor (FF) of 61% compared to the undoped device. Moreover, the small amount of In incorporated into the CZTSSe absorber demonstrated reduced nonradiative recombination, improved carrier separation, and enhanced carrier transport properties. This study suggests a simple and effective way to incorporate In to achieve high efficiency and low Voc loss.

2.
J Colloid Interface Sci ; 561: 287-297, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31761468

ABSTRACT

We report, a shape controlled novel synthesis of Indium oxide (In2O3) nanocapsule using biogenic reflux method. The In2O3 samples were obtained through optimization of the concentration of sodium citrate, which played a significant role to tune the size of nanocapsules. All synthesized In2O3 samples were characterized by using X-ray diffraction (XRD), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The morphological study reflects the effect of sodium citrate on the size of nanocapsules and confirms the formation of nanocapsules in the range of 50 nm. Furthermore, the photocatalytic activity of In2O3 nanocapsules based photocatalyst was carried out for the degradation of Crystal Violet (CV) dye under natural sunlight illumination. The experiment revealed that the In2O3 nanocapsule efficiently degrades 90% of CV within 180 min. This effort recommends the synthesis of In2O3 nanocapsule based photocatalyst for rapid degradation of CV under natural sunlight illumination.

SELECTION OF CITATIONS
SEARCH DETAIL
...