Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Inf Model ; 63(21): 6476-6486, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37603536

ABSTRACT

In the drug discovery paradigm, the evaluation of absorption, distribution, metabolism, and excretion (ADME) and toxicity properties of new chemical entities is one of the most critical issues, which is a time-consuming process, immensely expensive, and poses formidable challenges in pharmaceutical R&D. In recent years, emerging technologies like artificial intelligence (AI), big data, and cloud technologies have garnered great attention to predict the ADME and toxicity of molecules. Currently, the blend of quantum computation and machine learning has attracted considerable attention in almost every field ranging from chemistry to biomedicine and several engineering disciplines as well. Quantum computers have the potential to bring advances in high-throughput experimental techniques and in screening billions of molecules by reducing development costs and time associated with the drug discovery process. Motivated by the efficiency of quantum kernel methods, we proposed a quantum machine learning (QML) framework consisting of a classical support vector classifier algorithm with a kernel-based quantum classifier. To demonstrate the feasibility of the proposed QML framework, the simplified molecular input line entry system (SMILES) notation-based string kernel, combined with a quantum support vector classifier, is used for the evaluation of chemical/drug ADME-Tox properties. The proposed quantum machine learning framework is validated and assessed via large-scale simulations. Based on our results from numerical simulations, the quantum model achieved the best performance as compared to classical counterparts in terms of the area under the curve of the receiver operating characteristic curve (AUC ROC; 0.80-0.95) for predicting outcomes on ADME-Tox data sets for small molecules, with a different number of features. The deployment of the proposed framework in the pharmaceutical industry would be extremely valuable in making the best decisions possible.


Subject(s)
Artificial Intelligence , Drug Discovery , Drug Discovery/methods , Machine Learning , Algorithms , Pharmaceutical Preparations
2.
PLoS One ; 17(1): e0262346, 2022.
Article in English | MEDLINE | ID: mdl-35051206

ABSTRACT

In quantum computing, the variational quantum algorithms (VQAs) are well suited for finding optimal combinations of things in specific applications ranging from chemistry all the way to finance. The training of VQAs with gradient descent optimization algorithm has shown a good convergence. At an early stage, the simulation of variational quantum circuits on noisy intermediate-scale quantum (NISQ) devices suffers from noisy outputs. Just like classical deep learning, it also suffers from vanishing gradient problems. It is a realistic goal to study the topology of loss landscape, to visualize the curvature information and trainability of these circuits in the existence of vanishing gradients. In this paper, we calculate the Hessian and visualize the loss landscape of variational quantum classifiers at different points in parameter space. The curvature information of variational quantum classifiers (VQC) is interpreted and the loss function's convergence is shown. It helps us better understand the behavior of variational quantum circuits to tackle optimization problems efficiently. We investigated the variational quantum classifiers via Hessian on quantum computers, starting with a simple 4-bit parity problem to gain insight into the practical behavior of Hessian, then thoroughly analyzed the behavior of Hessian's eigenvalues on training the variational quantum classifier for the Diabetes dataset. Finally, we show how the adaptive Hessian learning rate can influence the convergence while training the variational circuits.


Subject(s)
Machine Learning , Neural Networks, Computer , Quantum Theory , Algorithms , Computer Simulation
3.
Sci Total Environ ; 743: 140770, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32679501

ABSTRACT

Spatial-temporal information of different water resources is essential to rationally manage, sustainably develop, and optimally utilize water. This study focused on simulating future water footprint (WF) of two agronomically important crops (i.e., wheat and maize) using deep neural networks (DNN) method in Nile delta. DNN model was calibrated and validated by using 2006-2014 and 2015-2017 datasets. Moreover, future data (2022-2040) were obtained from three Representative Concentration Pathways (RCP) 2.6, 4.5, and 8.5, and incorporated into DNN prediction set. The findings showed that determination-coefficient between historical-predicted crop evapotranspiration (ETc) varied from 0.92 to 0.97 for two crops. The yield prediction values of wheat-maize deviated within the ranges of -3.21% to 3.47% and -4.93% to 5.88%, respectively. Based on the ensemble of RCP, precipitation was forecasted to decease by 667.40% and 261.73% in winter and summer in western as compared to eastern, respectively, which will ultimately be dropped to 105.02% and 60.87%, respectively parallel to historical. Therefore, the substantial fluctuations in precipitation caused an obvious decrease in green WF of wheat (i.e., 24.96% and 37.44%) in western and eastern, respectively. Additionally, for maize, it induced a 103.93% decrease in western and an 8.96% increase in eastern. Furthermore, increasing ETc by 8.46% and 12.45% gave rise to substantially increasing (i.e., 8.96% and 17.21%) in western for wheat-maize compared to the east, respectively. Likewise, grey wheat-maize WF findings reveals that there was an increase of 3.07% and 5.02% in western as compared to -14.51% and 12.37% in eastern. Hence, our results highly recommend the optimal use of the eastern delta to save blue-water by 16.58% and 40.25% of total requirements for wheat-maize in contrast to others. Overall, the current research framework and results derived from the adopted methodology will help in optimal planning of future water under climate change in the agricultural sector.

4.
Neural Comput ; 31(7): 1499-1517, 2019 07.
Article in English | MEDLINE | ID: mdl-31113303

ABSTRACT

Interest in quantum computing has increased significantly. Tensor network theory has become increasingly popular and widely used to simulate strongly entangled correlated systems. Matrix product state (MPS) is a well-designed class of tensor network states that plays an important role in processing quantum information. In this letter, we show that MPS, as a one-dimensional array of tensors, can be used to classify classical and quantum data. We have performed binary classification of the classical machine learning data set Iris encoded in a quantum state. We have also investigated its performance by considering different parameters on the ibmqx4 quantum computer and proved that MPS circuits can be used to attain better accuracy. Furthermore the learning ability of an MPS quantum classifier is tested to classify evapotranspiration (ET o ) for the Patiala meteorological station located in northern Punjab (India), using three years of a historical data set (Agri). We have used different performance metrics of classification to measure its capability. Finally, the results are plotted and the degree of correspondence among values of each sample is shown.

SELECTION OF CITATIONS
SEARCH DETAIL
...