Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychol ; 10: 1297, 2019.
Article in English | MEDLINE | ID: mdl-31231285

ABSTRACT

Several challenges (e.g., sexism, parental leave, the glass ceiling, etc.) disproportionately affect women in academia (and beyond), and thus perpetuate the leaky pipeline metaphor for women who opt-out of an academic career. Although this pattern can be seen at all levels of the academic hierarchy, a critical time for women facing such challenges is during the postdoctoral stage, when personal life transitions and professional ambitions collide. Using a social identity approach, we explore factors affecting the mental health of postdoctoral women, including identity development (e.g., as a mother, a scientist) and lack of control (uncertainty about one's future personal and professional prospects), which likely contribute to the leak from academia. In this mixed-method research, Study 1 comprised interviews with postdoctoral women in North America (n = 13) and Europe (n = 8) across a range disciplines (e.g., psychology, physics, political science). Common themes included the negative impact of career uncertainty, gender-based challenges (especially sexism and maternity leave), and work-life balance on mental and physical health. However, interviewees also described attempts to overcome gender inequality and institutional barriers by drawing on support networks. Study 2 comprised an online survey of postdoctoral women (N = 146) from a range of countries and academic disciplines to assess the relationships between social identification (e.g., disciplinary, gender, social group), perceived control (i.e., over work and life), and mental health (i.e., depression, anxiety, stress, and life satisfaction). Postdoctoral women showed mild levels of stress and depression, and were only slightly satisfied with life. They also showed only moderate levels of perceived control over one's life and work. However, hierarchical regression analyses revealed that strongly identifying with one's discipline was most consistently positively associated with both perceived control and mental health. Collectively, these findings implicate the postdoctoral stage as being stressful and tenuous for women regardless of academic background or nationality. They also highlight the importance of disciplinary identity as a potentially protective factor for mental health that, in turn, may diminish the rate at which postdoctoral women leak from the academic pipeline.

2.
Proc Natl Acad Sci U S A ; 113(40): E5925-E5933, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27655888

ABSTRACT

Microorganisms are the most abundant lifeform on Earth, mediating global fluxes of matter and energy. Over the past decade, high-throughput molecular techniques generating multiomic sequence information (DNA, mRNA, and protein) have transformed our perception of this microcosmos, conceptually linking microorganisms at the individual, population, and community levels to a wide range of ecosystem functions and services. Here, we develop a biogeochemical model that describes metabolic coupling along the redox gradient in Saanich Inlet-a seasonally anoxic fjord with biogeochemistry analogous to oxygen minimum zones (OMZs). The model reproduces measured biogeochemical process rates as well as DNA, mRNA, and protein concentration profiles across the redox gradient. Simulations make predictions about the role of ubiquitous OMZ microorganisms in mediating carbon, nitrogen, and sulfur cycling. For example, nitrite "leakage" during incomplete sulfide-driven denitrification by SUP05 Gammaproteobacteria is predicted to support inorganic carbon fixation and intense nitrogen loss via anaerobic ammonium oxidation. This coupling creates a metabolic niche for nitrous oxide reduction that completes denitrification by currently unidentified community members. These results quantitatively improve previous conceptual models describing microbial metabolic networks in OMZs. Beyond OMZ-specific predictions, model results indicate that geochemical fluxes are robust indicators of microbial community structure and reciprocally, that gene abundances and geochemical conditions largely determine gene expression patterns. The integration of real observational data, including geochemical profiles and process rate measurements as well as metagenomic, metatranscriptomic and metaproteomic sequence data, into a biogeochemical model, as shown here, enables holistic insight into the microbial metabolic network driving nutrient and energy flow at ecosystem scales.


Subject(s)
Genomics/methods , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Oxygen/metabolism , Oxygen/pharmacology , Base Sequence , Calibration , DNA , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors
3.
Bioinformatics ; 31(20): 3345-7, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26076725

ABSTRACT

UNLABELLED: Next-generation sequencing is producing vast amounts of sequence information from natural and engineered ecosystems. Although this data deluge has an enormous potential to transform our lives, knowledge creation and translation need software applications that scale with increasing data processing and analysis requirements. Here, we present improvements to MetaPathways, an annotation and analysis pipeline for environmental sequence information that expedites this transformation. We specifically address pathway prediction hazards through integration of a weighted taxonomic distance and enable quantitative comparison of assembled annotations through a normalized read-mapping measure. Additionally, we improve LAST homology searches through BLAST-equivalent E-values and output formats that are natively compatible with prevailing software applications. Finally, an updated graphical user interface allows for keyword annotation query and projection onto user-defined functional gene hierarchies, including the Carbohydrate-Active Enzyme database. AVAILABILITY AND IMPLEMENTATION: MetaPathways v2.5 is available on GitHub: http://github.com/hallamlab/metapathways2. CONTACT: shallam@mail.ubc.ca SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Information Storage and Retrieval , Molecular Sequence Annotation , Phylogeny , Software , Algorithms , Databases, Genetic , Humans , Sequence Analysis, DNA/methods
4.
Environ Sci Technol ; 48(24): 14248-57, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25375225

ABSTRACT

Runoff from glaciers and ice sheets has been acknowledged as a potential source of bioavailable dissolved organic matter (DOM) to downstream ecosystems. This source may become increasingly significant as glacial melt rates increase in response to future climate change. Recent work has identified significant concentrations of bioavailable carbon and iron in Greenland Ice Sheet (GrIS) runoff. The flux characteristics and export of N-rich DOM are poorly understood. Here, we employed electrospray ionization (ESI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to determine the elemental compositions of DOM molecules in supraglacial water and subglacial runoff from a large GrIS outlet glacier. We provide the first detailed temporal analysis of the molecular composition of DOM exported over a full melt season. We find that DOM pools in supraglacial and subglacial runoff are compositionally diverse and that N-rich material is continuously exported throughout the melt season, as the snowline retreats further inland. Identification of protein-like compounds and a high proportion of N-rich DOM, accounting for 27-41% of the DOM molecules identified by ESI FT-ICR MS, may suggest a microbial provenance and high bioavailability of glacially exported DOM to downstream microbial communities.


Subject(s)
Climate Change , Ice Cover/chemistry , Mass Spectrometry/methods , Nitrogen/chemistry , Seasons , Carbon , Ecosystem , Fourier Analysis , Greenland , Time Factors
5.
Science ; 320(5877): 778-81, 2008 May 09.
Article in English | MEDLINE | ID: mdl-18420900

ABSTRACT

Surface meltwater that reaches the base of an ice sheet creates a mechanism for the rapid response of ice flow to climate change. The process whereby such a pathway is created through thick, cold ice has not, however, been previously observed. We describe the rapid (<2 hours) drainage of a large supraglacial lake down 980 meters through to the bed of the Greenland Ice Sheet initiated by water-driven fracture propagation evolving into moulin flow. Drainage coincided with increased seismicity, transient acceleration, ice-sheet uplift, and horizontal displacement. Subsidence and deceleration occurred over the subsequent 24 hours. The short-lived dynamic response suggests that an efficient drainage system dispersed the meltwater subglacially. The integrated effect of multiple lake drainages could explain the observed net regional summer ice speedup.

SELECTION OF CITATIONS
SEARCH DETAIL
...