Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroimmune Pharmacol ; 19(1): 35, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042253

ABSTRACT

Brain glucose deprivation is a component of the pathophysiology of ischemia, glucose transporter1 (GLUT1) deficiency, neurological disorders and occurs transiently in diabetes. Microglia, the neuroimmune cells must function effectively to offer immune defence and debris removal in low-energy settings. Brain glucose deprivation may compromise microglial functions further escalating the disease pathology and deteriorating the overall mental health. In the current study, HMC3 human microglia-like cells were cultured in vitro and exposed to glucose deprivation to investigate the effects of glucose deprivation on phenotypic state, redox status, secretion of cytokines and phagocytic capabilities of HMC3 cells. However, HMC3 cells were able to proliferate in the absence of glucose but showed signs of redox imbalance and mitochondrial dysfunction, as demonstrated by decreased MTT reduction and Mito Tracker™ staining of cells, along with a concomitant reduction in NOX2 protein, superoxide, and nitrite levels. Reduced levels of secreted TNF and IL-1ß were the signs of compromised cytokine secretion by glucose-deprived HMC3 microglia-like cells. Moreover, glucose-deprived HMC3 cells also showed reduced phagocytic activity as assessed by fluorescently labelled latex beads-based functional phagocytosis assay. ß-hydroxybutyrate (BHB) supplementation restored the redox status, mitochondrial health, cytokine secretion, and phagocytic activity of glucose-deprived HMC3 microglia-like cells. Overall, impaired brain glucose metabolism may hinder microglia's capacity to release diffusible immune factors and perform phagocytosis. This could escalate the mental health issues in neurological diseases where brain glucose metabolism is compromised. Moreover, nutritional ketosis or exogenous ketone supplementation such as BHB may be utilized as a potential metabolic therapies for these conditions.


Subject(s)
3-Hydroxybutyric Acid , Cytokines , Glucose , Microglia , Oxidation-Reduction , Phagocytosis , Humans , Glucose/metabolism , Oxidation-Reduction/drug effects , Microglia/drug effects , Microglia/metabolism , Cytokines/metabolism , Phagocytosis/drug effects , 3-Hydroxybutyric Acid/pharmacology , Cell Line
2.
J Nutr Biochem ; 127: 109591, 2024 May.
Article in English | MEDLINE | ID: mdl-38311044

ABSTRACT

The ketogenic diet (KD) has been shown to reduce anxiety and enhance cognitive functions in neurological diseases. However, the sex-specific effects of KD on anxiety-like behavior in healthy individuals and the underlying molecular mechanisms contributing to these effects, including neuroinflammation, are unelucidated. This study investigated the sex-specific effects of KD on anxiety-like behavior and the neuroimmune response in the prefrontal cortex (PFC) and hippocampus of healthy C57BL/6J male and female mice. Animals were fed either a control diet (CD- 17% fat, 65% carb, 18% protein) or a KD (80% fat, 5% carb, 15% protein) for 4 weeks. KD increased the levels of circulating ß-hydroxybutyrate (BHB) both in males and females. However, PFC BHB levels were found to be elevated only in KD males. Moreover, KD did not affect the behavior of females but improved motor abilities and reduced anxiety levels in males. KD suppressed the mRNA expression of the pan microglial markers (Cd68, P2ry12) and induced morphological changes in the male PFC microglia. A sex-specific decrease in IL1ß and an increase in IL-10 levels was found in the PFC of KD males. A similar trend was observed in the hippocampus of males where KD reduced the mRNA expression of P2ry12, Il1ß, and cFos. Additionally, BHB increased the production of IL-10 whereas it decreased the production of IL1ß from human microglia in in-vitro conditions. In summary, these results demonstrate that the anxiolytic and motor function enhancement abilities of KD are male-specific. Reduced pro-inflammatory and improved anti-inflammatory factors in the male PFC and hippocampus may underlie these effects.


Subject(s)
Diet, Ketogenic , Mice , Male , Animals , Humans , Female , Interleukin-10 , Mice, Inbred C57BL , 3-Hydroxybutyric Acid , Anxiety , RNA, Messenger
3.
Neuropharmacology ; 249: 109868, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38403263

ABSTRACT

Sugar bingeing induces maladaptive neuroadaptations to decrease dietary control and promote withdrawal symptoms. This study investigated sex differences in sucrose bingeing, sucrose withdrawal-induced negative mood effects and underlying neuroimmune response in the prefrontal cortex (PFC) and nucleus accumbens (NAc) of C57BL/6J male and female mice. Two-bottle sucrose choice paradigm was used to develop sucrose dependence in mice. Female mice consumed more sucrose than male mice when given free access to water and 10% sucrose for four weeks. A significant increase in the mRNA expression of neuroinflammatory markers (Il1ß, Tnfα) was found in the PFC of males exposed to sucrose withdrawal. Sucrose bingeing and subsequent sucrose withdrawal showed elevated protein levels of pro-inflammatory cytokines/chemokines/growth factors in the PFC (IL-1ß, IL-6, TNFα, IFN-γ, IL-10, CCL5, VEGF) and NAc (IL-1ß, IL-6, IL-10, VEGF) of male mice as compared to their water controls. These effects were concurrent with reduced mRNA expression of neuronal activation marker (cFos) in the PFC of sucrose withdrawal males. One week of sucrose withdrawal after prolonged sucrose consumption showed anxiety-like behavior in male mice, not in females. In conclusion, this study demonstrates that repeated access to sucrose induces anxiety-like behavior when the sugar is no longer available in the diet and these effects are male-specific. Elevated neuroinflammation in reward neurocircuitry may underlie these sex-specific effects.


Subject(s)
Interleukin-10 , Sucrose , Mice , Female , Male , Animals , Tumor Necrosis Factor-alpha , Interleukin-6 , Vascular Endothelial Growth Factor A , Mice, Inbred C57BL , Anxiety/chemically induced , Anxiety/metabolism , Water , RNA, Messenger
4.
Mol Pharm ; 20(6): 2899-2910, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37116080

ABSTRACT

Oxidative stress, reactive oxygen species generation, and overexpression of VEGF are signatory events in diabetic retinopathy. The downregulation of VEGF and anti-inflammatory action pave the way for diabetic retinopathy (DR) therapy. In that, lower absorption kinetics of melatonin limits its immense therapeutic potential. Hence, we have demonstrated a reverse microemulsion method to synthesize melatonin-loaded polydopamine nanoparticles to replenish both at a single platform with an improved melatonin delivery profile. The study has evaluated in vitro and in vivo protection efficiency of biocompatible melatonin-loaded polydopamine nanoparticles (MPDANPs). The protection mechanism was explained by downregulation of VEGF, CASPASE3, and PKCδ against high-glucose/streptozotocin (STZ)-induced insults, in vitro and in vivo. The anti-inflammatory and antiangiogenic effect and potential of MPDANPs to enhance melatonin in vivo stability with prolonged circulation time have proved MPDANPs as a potential therapeutic candidate in DR management. The DR therapeutic potential of MPDANPs has been arbitrated by improving the bioavailability of melatonin and inhibition of VEGF-PKCδ crosstalk in vivo.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Melatonin , Humans , Diabetic Retinopathy/drug therapy , Melatonin/pharmacology , Melatonin/therapeutic use , Retina , Vascular Endothelial Growth Factor A
SELECTION OF CITATIONS
SEARCH DETAIL
...