Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Virusdisease ; 34(1): 1-14, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37009257

ABSTRACT

Respiratory syncytial virus (RSV) is known to be the major cause of lower respiratory tract infections in infants and in the elderly. RSV was recently reclassified and simplified into three genotypes of the RSV-A subgroup (GA1-GA3) and into seven genotypes of the RSV-B subgroup (GB1-GB7). This classification strategy was not implemented globally. This study intended to reclassify the sequences that were submitted in GenBank till September 2021 from India. The gene sequences of the ectodomain region, second hypervariable region (SHR), and the partial second hypervariable region (PSHR) of the G gene were selected for the analysis. 25 ectodomain, 36 s hypervariable, and 19 partial second hypervariable regions of the RSV-A subgroup and 42-ectodomain, 49-s hypervariable region and 11-partial second hypervariable region of RSV-B subgroup were used for phylogenetic analysis. P-distance was calculated to support the genotype determination done by phylogenetic analysis. Phylogenetic analysis revealed that GA2.3.1, GA2.3.3, GA2.3.4, GA2.3.5, and GA2.3.6b lineages of GA2 genotype for RSV-A; and GB5.0.1, GB5.0.2, GB5.0.3, GB5.0.4a, GB5.0.4c, GB5.0.5a, GB5.0.5c lineages of GB5 genotype and GB7 genotype for RSV-B were that circulated in India. This work has implication for RSV vaccine research, and also for strategies for the prevention and control of RSV infection in humans. Supplementary Information: The online version contains supplementary material available at 10.1007/s13337-022-00802-x.

2.
Virus Genes ; 57(6): 489-501, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34524602

ABSTRACT

Respiratory syncytial virus (RSV) is a common cause of respiratory tract infections among children less than 5 years of age and the elderly. This study intended to determine the circulating genotypes of RSV among severe acute respiratory illness (SARI) cases during the period 2016-2018 in India, among hospitalized acute febrile illness cases of age ranging from 1 to 65 years. Throat/nasopharyngeal swab samples were subjected for testing RSV and subgroups by real-time reverse transcriptase polymerase chain reaction (RT-PCR), further sequencing and phylogenetic analysis were performed for the second hypervariable region of the G gene. RSV-A and B subtypes co-circulated during the years 2016, 2017, and 2018, with RSV-A as the dominant subtype in 2016, and RSV-B as the dominant subgroup in 2017 and 2018. Phylogenetic analysis revealed that the circulating genotypes of RSV were GA2 (16/16), of RSV-A, and GB5 (23/23) of RSV-B in the South, North, and Northeast region of India during the period between 2016 and 2018. Here we report the first study comprising the distribution of RSV-A and B genotypes in the different geographic regions of India among children and adults during the year 2016 to 2018. We also report GA2.3.7 lineage of GA2 genotype for the first time in India to the best of our knowledge.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Adolescent , Aged , Child , Child, Preschool , Genotype , Humans , Infant , Molecular Epidemiology , Phylogeny , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus, Human/genetics , Respiratory Tract Infections/epidemiology
3.
Immunobiology ; 220(10): 1170-6, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26074064

ABSTRACT

Dengue, the most rampant zoonotic viral disease in tropics, contributes to 14% of acute febrile illness cases globally. Encephalitis in primary Dengue fever, with/without haemorrhage has been reported occasionally. Our study presents novel evidence for this rarity at the molecular level. Murine microglia (BV2) were infected in-vitro with Dengue virus (DENV) serotypes (1-4) and their immune response was evaluated. Gene expressions of TNF-α, IL-10, IFN-γ, and IL1-ß constituted the pro-inflammatory response, levels of MCP-1 and IL-6 represented the regulatory mechanism and changes in the levels of Occludin, MMP-2, MMP-9 and TIMP-1 encompassed the break-down of the blood-brain barrier (BBB). Cytokine response was studied using RT-PCR, with relative fold change assessed using ΔΔCt method. We observed that DENV1 increased vascular permeability and trans-membrane transport, while DENV2 resulted in oxidative stress. DENV3 infection presented with impaired immune response and DENV4 manifested a chaotropic response of the BBB protein genes. However, no serotype was able to breakdown the BBB, thus validating the low prevalence of encephalitis in dengue. Our study is the first reported evidence of the microglial immune response resisting the entry of DENV into the CNS. It also supports the theory that primary Dengue infection results in the acute inflammation of the microglia, and the host immune response plays a critical role in development of encephalitis.


Subject(s)
Blood-Brain Barrier/immunology , Dengue Virus/immunology , Dengue/immunology , Microglia/immunology , Animals , Blood-Brain Barrier/pathology , Blood-Brain Barrier/virology , Cell Line , Cytokines/immunology , Dengue/pathology , Matrix Metalloproteinase 2/immunology , Matrix Metalloproteinase 9/immunology , Mice , Microglia/pathology , Microglia/virology , Tissue Inhibitor of Metalloproteinase-1/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...