Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 3612, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38351241

ABSTRACT

Single cell and spatially resolved 'omic' techniques have enabled deep characterization of clinical pathologies that remain poorly understood, providing unprecedented insights into molecular mechanisms of disease. However, transcriptomic platforms are costly, limiting sample size, which increases the possibility of pre-analytical variables such as tissue processing and storage procedures impacting RNA quality and downstream analyses. Furthermore, spatial transcriptomics have not yet reached single cell resolution, leading to the development of multiple deconvolution methods to predict individual cell types within each transcriptome 'spot' on tissue sections. In this study, we performed spatial transcriptomics and single nucleus RNA sequencing (snRNAseq) on matched specimens from patients with either histologically normal or advanced fibrosis to establish important aspects of tissue handling, data processing, and downstream analyses of biobanked liver samples. We observed that tissue preservation technique impacts transcriptomic data, especially in fibrotic liver. Single cell mapping of the spatial transcriptome using paired snRNAseq data generated a spatially resolved, single cell dataset with 24 unique liver cell phenotypes. We determined that cell-cell interactions predicted using ligand-receptor analysis of snRNAseq data poorly correlated with cellular relationships identified using spatial transcriptomics. Our study provides a framework for generating spatially resolved, single cell datasets to study gene expression and cell-cell interactions in biobanked clinical samples with advanced liver disease.


Subject(s)
Digestive System Diseases , Liver Diseases , Humans , Transcriptome/genetics , Liver Diseases/genetics , Gene Expression Profiling , Liver Cirrhosis/genetics , Single-Cell Analysis
2.
Neurogastroenterol Motil ; 36(5): e14763, 2024 May.
Article in English | MEDLINE | ID: mdl-38342974

ABSTRACT

BACKGROUND: Altered prandial glycemic response after Roux-en-Y gastric bypass (RYGB) is exaggerated in patients with post-RYGB hypoglycemia. Increased contribution of glucagon-like peptide 1 (GLP-1) to prandial insulin secretion plays a key role in developing hypoglycemia after RYGB, but the role of nonhormonal gut factors remains unknown. Here, the effect of vagal activation on prandial bile acid (BA) composition in relation to glucose, insulin and gut hormone responses was examined in a small size group of nondiabetic subjects after RYGB with intact gallbladder compared to nonoperated controls. METHODS: Concentrations of blood glucose, hormones, and BAs were measured in two RYGB subjects with documented hypoglycemia (HGB), three asymptomatic RYGB-treated subjects (AGB), and four nonoperated controls with intact gallbladders during a meal-tolerance test with (MTT-Sham) and without (MTT) preceding modified sham feeding (chew and spit). KEY RESULTS: Meal ingestion raised serum total BAs in RYGB-treated subjects without any effect in nonoperated controls. Modified sham feeding similarly increased meal-induced responses of conjugated BAs (CBAs) in all subjects (p < 0.05 compared to MTT alone), whereas unconjugated BAs (UBAs), mainly deoxycholic and chenodeoxycholic acid, were raised only in the HGB group (p < 0.001 for interaction). Prandial UBAs had an inverse correlation with glucose nadir (r = -0.75, p < 0.05) and were directly associated with ISR and GLP-1 during MTT-Sham. CONCLUSIONS & INFERENCES: In this small cohort, vagal activation by modified sham feeding increases prandial CBAs in both operated and nonoperated subjects but enhances UBAs only in patients with documented post-RYGB hypoglycemia. Our findings highlight a potential role for nonhormonal gut factors, such as BA and gut microbiome, in glucose abnormalities after RYGB.


Subject(s)
Bile Acids and Salts , Blood Glucose , Gastric Bypass , Hypoglycemia , Vagus Nerve , Humans , Gastric Bypass/adverse effects , Bile Acids and Salts/blood , Blood Glucose/metabolism , Male , Female , Adult , Hypoglycemia/etiology , Hypoglycemia/blood , Middle Aged , Glucagon-Like Peptide 1/blood , Insulin/blood
3.
Hepatol Commun ; 7(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37994050

ABSTRACT

BACKGROUND: NASH causes a tremendous health care burden in the United States. A glucagon-like peptide-1 agonist, semaglutide (Sema), treatment resulted in hepatic steatosis reduction in clinical trials of NASH. Lysophosphatidic acid receptor 1 antagonists are known to have antifibrotic effects in several organs. We tested Sema and a novel lysophosphatidic acid receptor 1 antagonist, EPGN2154, individually and in combination to evaluate their efficacy for NASH remission in preclinical models. METHODS: In the present study, we used (1) C57Bl6/J wild-type mice fed on a high-fat, high-carbohydrate (HFHC) diet for 16 weeks and (2) leptin-deficient mice (ob/ob) fed on an Amylin liver NASH diet for 16 weeks. After 16 weeks, the mice were randomly distributed in equal numbers in (1) no-drug, (2) EPGN2154, (3) Sema, and (4) EPGN2154+Sema treatment groups for 8 additional weeks at a dosage of 10 mg/kg body weight for EPGN2154 (oral gavage, 5 days a week) and 6.17 µg/kg body weight of Sema (subcutaneous injection every alternate day, 3 days a week). RESULTS: In the wild-type-high-fat, high-carbohydrate model, we observed the most body weight loss in the EPGN2154+Sema combination group compared to the other treatment groups. All groups led to a significant reduction in alanine transaminase levels when compared to high-fat, high-carbohydrate-fed wild type. However, no significant difference in alanine transaminase levels was observed among the treatment groups. In the ob/ob mice study, Sema did not cause body weight loss. Moreover, the EPGN2154 and the combination groups had a lower NAFLD Activity Score and incidence of advanced-stage hepatic fibrosis than the Sema group. CONCLUSIONS: EPGN2154 demonstrated a hepato-protective effect independent of body weight loss in preclinical NASH models.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Receptors, Lysophosphatidic Acid/therapeutic use , Alanine Transaminase , Body Weight , Diet, High-Fat/adverse effects , Carbohydrates/therapeutic use , Weight Loss
4.
Res Sq ; 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37720049

ABSTRACT

Single cell and spatially resolved 'omic' techniques have enabled deep characterization of clinical pathologies that remain poorly understood, providing unprecedented insights into molecular mechanisms of disease. However, transcriptomic platforms are costly, limiting sample size, which increases the possibility of pre-analytical variables such as tissue processing and storage procedures impacting RNA quality and downstream analyses. Furthermore, spatial transcriptomics have not yet reached single cell resolution, leading to the development of multiple deconvolution methods to predict individual cell types within each transcriptome 'spot' on tissue sections. In this study, we performed spatial transcriptomics and single nucleus RNA sequencing (snRNASeq) on matched specimens from patients with either histologically normal or advanced fibrosis to establish important aspects of tissue handling, data processing, and downstream analyses of biobanked liver samples. We observed that tissue preservation technique impacts transcriptomic data, especially in fibrotic liver. Deconvolution of the spatial transcriptome using paired snRNASeq data generated a spatially resolved, single cell dataset with 24 unique liver cell phenotypes. We determined that cell-cell interactions predicted using ligand-receptor analysis of snRNASeq data poorly correlated with celullar relationships identified using spatial transcriptomics. Our study provides a framework for generating spatially resolved, single cell datasets to study gene expression and cell-cell interactions in biobanked clinical samples with advanced liver disease.

5.
J Pediatr Gastroenterol Nutr ; 73(1): 99-102, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34135298

ABSTRACT

ABSTRACT: To investigate the effect of high fructose diet on ultrastructure and content of hepatic mitochondria, we randomized 6-8 weeks old male C57Bl6/J mice to ad lib chow or high-fat-high-fructose (HF2) diet for 32 weeks. HF2-fed mice gained more weight, had higher plasma alanine aminotransferase, and fasting glucose levels and increased hepatic triglyceride content at all time points compared to chow-fed mice. HF2-fed mice had lower mitochondrial to nuclear DNA ratio compared to chow-fed mice. HF2-fed mice had lower average mitochondrial surface area and the number of mitochondria compared to chow-fed mice. HF2-fed mice had higher expression of the hepatic endoplasmic reticulum stress marker Chop, compared to chow-fed mice. A diet high in fat and fructose leads to enhanced hepatic mitochondrial aging, depletion, and dysfunction, which may be important determinants of nonalcoholic steatohepatitis pathogenesis.


Subject(s)
Fructose , Liver , Aging , Animals , Diet , Fructose/adverse effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria
6.
Endocrinology ; 162(4)2021 04 01.
Article in English | MEDLINE | ID: mdl-33567453

ABSTRACT

Argonaute 2 (Ago2) is the main component of the RNA-induced silencing complex. We recently showed that liver-specific Ago2-deficiency in mice (L-Ago2 knockout [KO] mice) enhances mitochondrial oxidation and alleviates obesity-associated pathophysiology. However, the precise mechanisms behind the role of hepatic Ago2 in regulating the mitochondrial oxidation associated with glucose metabolism are still unclear. Here, we show that hepatic Ago2 regulates the function of peroxisome proliferator-activated receptor α (PPARα) for oxidative metabolism. In both genetically and diet-induced severe obese conditions, L-Ago2 KO mice developed obesity and hepatic steatosis but exhibited improved glucose metabolism accompanied by lowered expression levels of pathologic microRNAs (miRNAs), including miR-802, miR-103/107, and miR-152, and enhanced expression of PPARα and its target genes regulating oxidative metabolism in the liver. We then investigated the role of hepatic Ago2 in the outcomes of vertical sleeve gastrectomy (VSG) in which PPARα plays a crucial role in a drastic transcription reprogram associated with improved glycemia post VSG. Whereas VSG reduced body weight and improved fatty liver in wild-type mice, these effects were not observed in hepatic Ago2-deficient mice. Conversely, glucose metabolism was improved in a hepatic Ago2-dependent manner post VSG. Treating Ago2-deficient primary hepatocytes with WY-14643, a PPARα agonist, showed that Ago2-deficiency enhances sensitivity to WY-14643 and increases expression of PPARα target genes and mitochondrial oxidation. Our findings suggest that hepatic Ago2 function is intrinsically associated with PPARα that links Ago2-mediated RNA silencing with mitochondrial functions for oxidation and obesity-associated pathophysiology.


Subject(s)
Argonaute Proteins/deficiency , Liver/metabolism , Obesity/metabolism , Obesity/surgery , PPAR alpha/metabolism , Animals , Argonaute Proteins/genetics , Bariatric Surgery , Glucose/metabolism , Glucose Tolerance Test , Glycemic Control , Hepatocytes/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/drug therapy , Obesity/genetics , Oxidative Stress , PPAR alpha/genetics , Pyrimidines/administration & dosage
7.
Article in English | MEDLINE | ID: mdl-32967428

ABSTRACT

Vertical sleeve gastrectomy (VSG) is the best current therapy for remission of obesity and its co-morbidities. It is understood to alter the enterohepatic circulation of bile acids in vivo. Fibroblast growth factor 19 (FGF19) in human and its murine orthologue Fgf15 plays a pivotal role in this bile acid driven enterohepatic signaling. The present study evaluated the metabolic outcomes of VSG in Fgf15 deficient mice. 6-8 weeks old male wildtype mice (WT) and Fgf15 deficient mice (KO) were fed a high fat diet (HFD) for 8 weeks. At 8th week of diet, both WT and KO mice were randomly distributed to VSG or sham surgery. Post-surgery, mice were observed for 8 weeks while fed a HFD and then euthanized to collect tissues for experimental analysis. Fgf15 deficient (KO) mice lost weight post VSG, but glucose tolerance in KO mice did not improve post VSG compared to WT mice. Enteroids derived from WT and KO mice proliferated with bile acid exposure in vitro. Post VSG both WT and KO mice had similarly altered bile acid enterohepatic flux, however Fgf15 deficient mice post VSG had increased hepatic accumulation of free and esterified cholesterol leading to lipotoxicity related ER stress, inflammasome activation, and increased Fgf21 expression. Intact Fgf15 mediated enterohepatic bile acid signaling, but not changes in bile acid flux, appear to be important for the metabolic improvements post-murine bariatric surgery. These novel data introduce a potential point of distinction between bile acids acting as ligands compared to their canonical downstream signaling pathways.

8.
Stem Cell Res Ther ; 11(1): 412, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32967734

ABSTRACT

BACKGROUND: Cell therapy is one of the most promising therapeutic interventions for retinitis pigmentosa. In the current study, we aimed to assess if peripheral blood-derived monocytes which are highly abundant and accessible could be utilized as a potential candidate for phenotypic differentiation into neuron-like cells. METHODS: The peripheral blood-derived monocytes were reconditioned phenotypically using extrinsic growth factors to induce pluripotency and proliferation. The reconditioned monocytes (RM) were further incubated with a cocktail of growth factors involved in retinal development and growth to induce retinal neuron-like properties. These cells, termed as retinal neuron-like cells (RNLCs) were characterized for their morphological, molecular and functional behaviour in vitro and in vivo. RESULTS: The monocytes de-differentiated in vitro and acquired pluripotency with the expression of prominent stem cell markers. Treatment of RM with retinal growth factors led to an upregulation of neuronal and retinal lineage markers and downregulation of myeloid markers. These cells show morphological alterations resembling retinal neuron-like cells and expressed photoreceptor (PR) markers. The induced RNLCs also exhibited relative membrane potential change upon light exposure suggesting that they have gained some neuronal characteristics. Further studies showed that RNLCs could also integrate in an immune-deficient retinitis pigmentosa mouse model NOD.SCID-rd1 upon sub-retinal transplantation. The RNLCs engrafted in the inner nuclear layer (INL) and ganglion cell layer (GCL) of the RP afflicted retina. Mice transplanted with RNLCs showed improvement in depth perception, exploratory behaviour and the optokinetic response. CONCLUSIONS: This proof-of-concept study demonstrates that reconditioned monocytes can be induced to acquire retinal neuron-like properties through differentiation using a defined growth media and can be a potential candidate for cell therapy-based interventions and disease modelling for ocular diseases.


Subject(s)
Monocytes , Retina , Animals , Cell Differentiation , Mice , Mice, Inbred NOD , Mice, SCID , Neurons
9.
Sci Rep ; 10(1): 6689, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32317687

ABSTRACT

Sugar-sweetened beverage consumption is a known independent risk factor for nonalcoholic steatohepatitis (NASH). Non-caloric sweeteners (NCS) are food additives providing sweetness without calories and are considered safe and/or not metabolized by the liver. The potential role of newer NCS in the regulation of NASH, however, remain unknown. Our study aimed to determine the impact of newer NCS including Rebaudioside A and sucralose on NASH using high fat diet induced obesity mouse model by substituting fructose and sucrose with NCS in the drinking water. We characterized the phenotype of NCS- treated obesity and investigated the alterations of hepatic function and underlying mechanisms. We found that NCS have no impact on weight gain and energy balance in high fat diet induced obesity. However, in comparison to fructose and sucrose, Rebaudioside A significantly improved liver enzymes, hepatic steatosis and hepatic fibrosis. Additionally, Rebaudioside A improved endoplasmic reticulum (ER) stress related gene expressions, fasting glucose levels, insulin sensitivity and restored pancreatic islet cell mass, neuronal innervation and microbiome composition. We concluded that Rebaudioside A significantly ameliorated murine NASH, while the underlying mechanisms requires further investigation.


Subject(s)
Diterpenes, Kaurane/therapeutic use , Liver/pathology , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/drug therapy , Protective Agents/therapeutic use , Sugar-Sweetened Beverages/adverse effects , Adiposity/drug effects , Animals , Diet, High-Fat , Diterpenes, Kaurane/pharmacology , Endoplasmic Reticulum Stress/drug effects , Energy Metabolism/drug effects , Fructose , Glucose/metabolism , Homeostasis/drug effects , Insulin Resistance , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/pathology , Liver/drug effects , Liver/physiopathology , Mice , Microbiota/drug effects , Obesity/etiology , Obesity/metabolism , Protective Agents/pharmacology , Weight Gain/drug effects
11.
J Vis Exp ; (132)2018 02 10.
Article in English | MEDLINE | ID: mdl-29553548

ABSTRACT

Partial hepatectomy is a versatile and reproducible method to study liver regeneration and the effect of cell based therapeutics in various pathological conditions. Partial hepatectomy also facilitates the increased engraftment and proliferation of transplanted cells by accelerating neovascularization and cell migration towards the liver. Here, we describe a simple protocol for performing 30% hepatectomy and transplantation of cells in the spleen of a non-obese diabetic/severe combined immunodeficient NOD.SCID (NOD.CB17-Prkdcscid/J) mouse. In this procedure, two small incisions are made. The first incision is to expose and resect the left lobe of the liver, and another small incision is made to expose the spleen for the intrasplenic transplantation of cells. This procedure does not require any specialized surgical skills, and it can be completed in 5-7 minutes with less stress and pain, faster recovery, and better survival. We have demonstrated the transplantation of hepatocytes isolated from a green fluorescent protein (GFP) expressing mouse (Transgenic C57BL/6-Tg (UBC-GFP) 30Scha/J), as well as hepatocyte like cells of human origin (NeoHep) in partially hepatectomized NOD.SCID mice.


Subject(s)
Hepatectomy/methods , Hepatocytes/transplantation , Liver Regeneration/physiology , Spleen/surgery , Animals , Hepatocytes/cytology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID
12.
Hepatol Commun ; 1(4): 299-310, 2017 Jun.
Article in English | MEDLINE | ID: mdl-29152605

ABSTRACT

Hepatic inflammation is a key pathological feature of Nonalcoholic Steatohepatitis (NASH). Natural Killer T-cells (NKT) and CD8+ T-cells are known to play an important role in obesity related adipose tissue inflammation. We hypothesized that these same inflammatory phenotypes would be present in progressive NASH. We used a previously established high fat high carbohydrate (HFHC) murine obesogenic diet model of progressive NASH to investigate the role of NKT cells and CD8+ T-cells in C57Bl6/J mice. Further, to better understand the impact of these cell populations; CD1d-deficient and CD8+ T-cell depleted mice were subjected to HFHC diet for 16 weeks. C57Bl6/J mice fed HFHC diet had increased body weight, liver triglyceride content, serum alanine aminotransferase (ALT) levels and increased NKT cells and CD8+ T-cells infiltration in the liver. In addition human liver sections from patients with NASH showed increased CD8+ T-cells. In comparison, CD1d-deficient and CD8-T cell depleted mice fed HFHC had lower hepatic triglyceride content, lower ALT levels, as well reduced α-smooth muscle actin (αSMA), collagen type 1 alpha 1 (Col1a1), collagen type 1 alpha 2 (Col1a2) mRNA expression, lower activated resident macrophages and infiltrating macrophages and improved NAFLD activity scores. Further, while CD1d-deficient mice were protected against weight gain on the HFHC diet, CD8 T-cell depleted mice gained weight on the HFHC diet. CONCLUSION: We found that NASH has an immunological signature that includes hepatic infiltrating NKT and CD8+ T-Cells. Depletion of these cells resulted in reduced NASH progression and thus presents novel therapeutic avenues for the treatment of NASH.

13.
Biol Open ; 6(4): 449-462, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28258056

ABSTRACT

Retinitis pigmentosa (RP) is a common retinal degeneration disease caused by mutation in any gene of the photo transduction cascade and results in photoreceptor dystrophy. Over decades, several animal models have been used to address the need for the elucidation of effective therapeutics and factors regulating retinal degeneration to prohibit or renew the damaged retina. However, controversies over the immune privilege of retina during cell transplantation and the role of immune modulation during RP still remain largely uninvestigated because of the lack of suitable animal models. Here, we have developed an immunocompromised mouse model, NOD.SCID-rd1, for retinitis pigmentosa (RP) by crossing CBA/J and NOD SCID mice and selecting homozygous double mutant animals for further breeding. Characterization of the newly developed RP model indicates a similar retinal degeneration pattern as CBA/J, with a decreased apoptosis rate and rhodopsin loss. It also exhibits loss of T cells, B cells and NK cells. The NOD.SCID-rd1 model is extremely useful for allogenic and xenogenic cell-based therapeutics, as indicated by the higher cell integration capacity post transplantation. We dissect the underlying role of the immune system in the progression of RP and the effect of immune deficiency on immune privilege of the eye using comparative qPCR studies of this model and the immune-competent RP model.

14.
Stem Cells Transl Med ; 6(1): 174-186, 2017 01.
Article in English | MEDLINE | ID: mdl-28170202

ABSTRACT

In view of the escalating need for autologous cell-based therapy for treatment of liver diseases, a novel candidate has been explored in the present study. The monocytes isolated from hepatitis B surface antigen (HBsAg) nucleic acid test (NAT)-positive (HNP) blood were differentiated to hepatocyte-like cells (NeoHep) in vitro by a two-step culture procedure. The excess neutrophils present in HNP blood were removed before setting up the culture. In the first step of culture, apoptotic cells were depleted and genes involved in hypoxia were induced, which was followed by the upregulation of genes involved in the c-MET signaling pathway in the second step. The NeoHep were void of hepatitis B virus and showed expression of albumin, connexin 32, hepatocyte nuclear factor 4-α, and functions such as albumin secretion and cytochrome P450 enzyme-mediated detoxification of xenobiotics. The engraftment of NeoHep derived from HBsAg-NAT-positive blood monocytes in partially hepatectomized NOD.CB17-Prkdcscid /J mice liver and the subsequent secretion of human albumin and clotting factor VII activity in serum make NeoHep a promising candidate for cell-based therapy. Stem Cells Translational Medicine 2017;6:174-186.


Subject(s)
Hepatitis B, Chronic/blood , Hepatocytes/cytology , Monocytes/metabolism , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction , Up-Regulation , Adolescent , Adult , Animals , Apoptosis/drug effects , Biomarkers/metabolism , Cell Differentiation , Cell Hypoxia , Cells, Cultured , Chromatin Assembly and Disassembly , Hepatitis B Surface Antigens/metabolism , Hepatocyte Nuclear Factor 4/metabolism , Hepatocytes/transplantation , Humans , Mice, Inbred NOD , Mice, SCID , Middle Aged , Neutrophils/metabolism , Young Adult
15.
F1000Res ; 6: 2045, 2017.
Article in English | MEDLINE | ID: mdl-29636897

ABSTRACT

Background: Magnetic sorting of cells, based on  microbead conjugated antibodies (Abs), employs positive as well as negative immunomagnetic separation methods, for isolation of a specific cell population. These microbeads are suggested to be nontoxic, biodegradable carriers conjugated to various antibodies. Isolation of cells through positive selection involves the attachment of antibody conjugated microbeads to the cells of interest, followed by their isolation in the presence of a strong magnetic field to obtain higher purity. Negative selection involves attachment of microbead conjugated antibodies to all other cell populations except the cells of interest, which remain untagged. In the present study, we compared the two methods for their effect on functional and immunophenotypic behavior of isolated CD14+ monocytes. Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from blood collected from healthy volunteers by density gradient centrifugation. Human blood derived monocytes were isolated through positive selection and negative selection, making use of the appropriate monocyte isolation kit. Monocytes were then stimulated with lipopolysaccharide (LPS) and their activation and proliferation capacity were examined. The degradation or dissociation of cell-bound microbeads was also investigated. Results: We observed an impaired LPS sensitivity as well as poor activation and proliferation capacity upon stimulation by LPS in positively sorted CD14+ monocytes as compared to negatively sorted CD14+ monocytes. The attached microbeads did not degrade and remained attached to the cells even after 6 days of culture. Conclusions: Our results suggest that positively sorted CD14+ cells exhibit hampered functionality and may result in inaccurate analysis and observations in downstream applications. However, these cells can be used for immediate analytical procedures.

16.
J Nutr Biochem ; 25(2): 219-26, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24445047

ABSTRACT

Cellular and humoral immunity had been implicated in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). This study was designed to assess if T, B and natural killer (NK) cells are involved in the progress of NAFLD in mouse models after chronic fructose treatment. Mouse models that are deficient in either T cells, B cells or NK cells or lacking both T and B cells were fed with 30% fructose solution for 12 weeks. Typical features of NAFLD, including the relative body weight, food and water intake, biochemical analytes, liver histology, NAFLD activity score, and glucose tolerance and insulin tolerance test were characterized. Further, the percentage of CD3, B220 and NK cells in peripheral-blood mononuclear cell, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, immunodetection for hepatic apoptosis (p53) and for inflammation (TNFα) and quantitative real-time polymerase chain reaction for putative and inflammatory genes involved were determined. Our results conclude that mice deficient in T cells or NK cells fail to develop fructose induced NAFLD whereas the immunocompetent mice and mice with B-cell-specific defect developed NAFLD. Taken together, these data support that the onset of fructose-induced NAFLD is associated with involvement of T cells and NK cells in mice.


Subject(s)
Disease Models, Animal , Fatty Liver/etiology , Fructose/administration & dosage , Immunocompromised Host , Animals , Apoptosis , Flow Cytometry , Gene Expression Regulation , In Situ Nick-End Labeling , Mice , Mice, Nude , Non-alcoholic Fatty Liver Disease , Polymerase Chain Reaction
17.
J Gastroenterol Hepatol ; 28(8): 1403-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23488792

ABSTRACT

BACKGROUND AND AIM: The purpose of this study is to assess whether the decrease in CD8 cells has any role in the development of non-alcoholic fatty liver disease (NAFLD). In this study, we therefore used antigen peptide transporter 1 (TAP1(-/-)) mice that cannot transport major histocompatibility complex class I antigens onto the cell surface resulting in failure of the generation of CD8 cells. METHODS: Wild-type C57Bl/6J and TAP1(-/-) mice were fed with 30% fructose solution for 8 weeks. The percentage of CD4, CD8 cells in peripheral blood mononuclear cells, and liver were sorted by fluorescence-activated cell sorting in both control and fructose-treated mice. Bodyweight, histopathological changes, oil red O staining, glucose tolerance test, intraperitoneal insulin tolerance test, serum levels of triglycerides, cholesterol, aspartate aminotransferase, and alanine aminotransferase were also evaluated. Quantitative real-time polymerase chain reaction was performed to determine the expression of specific genes involved in development of fatty changes in the liver. RESULTS: Chronic consumption of fructose in TAP1(-/-) mice did not develop NAFLD, insulin resistance, or change in level of CD8 cells. Moreover, there was delay in relative expression levels of genes involved in development of NAFLD in fructose-treated TAP1(-/-) mice. CONCLUSION: Taken together, the data suggest that TAP1(-/-) -deficient mice displayed reduced levels of CD8 cells that have a vital role in the initiation and propagation of liver inflammation and is a casual role in the beginning of fructose-induced liver damage as well as insulin resistance in mice.


Subject(s)
ATP-Binding Cassette Transporters/physiology , CD8-Positive T-Lymphocytes/immunology , Fatty Liver/genetics , Fatty Liver/immunology , Fructose , ATP Binding Cassette Transporter, Subfamily B, Member 2 , Animals , CD8-Positive T-Lymphocytes/metabolism , Disease Models, Animal , Fatty Liver/chemically induced , Histocompatibility Antigens Class I/metabolism , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...