Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ACS Appl Bio Mater ; 5(12): 5567-5581, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36480914

ABSTRACT

Herein, an innovative way of designing a star-shaped gold nanoconfined multiwalled carbon nanotube-engineered sensoring interface (AuNS@MWCNT//GCE) is demonstrated for quantification of methionine (MTH); a proof of concept for lung metastasis. The customization of the AuNS@MWCNT is assisted by surface electrochemistry and thoroughly discussed using state-of-the-art analytical advances. Micrograph analysis proves the protrusion of nanotips on the surface of potentiostatically synthesized AuNPs and validates the hypothesis of Turkevich seed (AuNP)-mediated formation of AuNSs. In addition, a facile synthesis of electropotential-assisted transformation of MWCNTs to luminescent nitrogen-doped graphene quantum dots (Nd-GQDs avg. ∼4.3 nm) is unveiled. The sensor elucidates two dynamic responses as a function of CMTH ranging from 2 to 250 µM and from 250 to 3000 µM with a detection limit (DL) of ∼0.20 µM, and is robust to interferents except for tiny response of a similar -SH group bearing Cys (<9.00%). The high sensitivity (0.44 µA·µM-1·cm-2) and selectivity of the sensor can be attributed to the strong hybridization of the Au nanoparticle with the sp2 C atom of the MWCNTs, which makes them a powerful electron acceptor for Au-SH-MTH interaction as evidenced by density functional theory (DFT) calculations. The validation of the acceptable recovery of MTH in real serum and pharma samples by standard McCarthy-Sullivan assay reveals the holding of great promise to provide valuable information for early diagnosis as well as assessing the therapeutic consequence of lung metastasis.


Subject(s)
Lung Neoplasms , Metal Nanoparticles , Nanotubes, Carbon , Humans , Gold , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL
...