Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Sci ; 37(8): 1157-1163, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-33518584

ABSTRACT

This study aims to explore biochemical changes in saliva during cardiorespiratory exercise using attenuated-total-reflectance-Fourier-transform-infrared-spectroscopy (ATR-FTIR). Saliva and blood samples were obtained from six athletes at rest, and after running at speeds of 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 kilometers-per-hour (km/h) on a treadmill (maximal stress test). Saliva ATR-FTIR spectra were analyzed using deconvolution and multivariate analysis. Area-under-the-curve calculations suggest differential changes in glucose, lactate, protein, lipids, carbohydrate and phosphate content in saliva during the test. Increases in glucose and lactate levels with increasing speeds were verified by simultaneous measurement of blood glucose and lactate levels using standard equipment (Roche®). Multivariate principal-component-analysis (PCA) showed discrete clusters for low (rest-14 km/h) and high (15 - 20 km/h) speeds, and PCA-linear-discriminant-analysis showed 100% classification of 18 - 20 km/h as high speed. Overall, results suggest the possibility of using this non-invasive saliva-based ATR-FTIR method for biochemical assessment during sports exercise and stress tests.


Subject(s)
Athletes , Saliva , Discriminant Analysis , Humans , Principal Component Analysis , Spectroscopy, Fourier Transform Infrared
2.
Anal Sci ; 36(9): 1059-1064, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32249246

ABSTRACT

Saliva has garnered a lot of interest as a non-invasive, easy to collect, and biochemical rich sample for attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) based disease diagnosis. Although a large number of studies have explored its potential, the preparation methods used differ greatly. For large scale clinical studies to aid translation into clinics, the collection/processing methodology needs to be standardized. Therefore, in this study, we explored different saliva collection (spitting, method A/cotton soaking, method B) and processing protocols (unprepared, TS; supernatant from the centrifugation, CS; and drying, C) to find which gives the best ATR-FTIR signals. Analysis showed highest proteins, carbohydrates, amino acids, and nucleic acid + proteins/lipids in BTS, BCS, ACS, and BC, respectively. Notably, only BC shows a 1377 cm-1 nucleic acid band that is also uniquely identified in multivariate analysis. We conclude that the collection-processing protocol should be based on a biochemical component that best gives a differential diagnosis.


Subject(s)
Saliva/chemistry , Specimen Handling/methods , Spectroscopy, Fourier Transform Infrared , Humans
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117818, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-31780307

ABSTRACT

Raman spectroscopy and scanning electron microscopy (SEM) were used to investigate the effect of coating materials and acidulated phosphate fluoride gel (APF) treatment on dentin before and after erosion-abrasion cycles. A multi-walled carbon nanotube/graphene oxide hybrid carbon-based material (MWCNTO-GO), nanohydroxyapatite (nHAp), or a combined composite (nHAp/MWCNTO-GO) were used as a coating. Seventy root dentin fragments obtained from 40 bovine teeth were prepared and divided into groups (n = 10): negative control, artificial saliva - C, positive control - APF; nHAp; MWCNTO-GO; APF_nHAp; APF_MWCNTO-GO and APF_nHAp/MWCNTO-GO. All samples were subjected to cycles of demineralization (orange juice, pH ~3.7, room temperature, 1 min) followed by remineralization (saliva, 37 °C, 1 h). The remineralization procedures were followed by tooth brushing (150 strokes). The above cycle was repeated 3×/day for 5 days. The previous APF treatment of dentin allowed a better affinity of nHAp and MWCNTO-GO with the inorganic and organic portion of dentin, respectively. This interaction indicates the formation of a protective layer for the dentin surface and for the collagen giving possible protection against erosion. SEM micrographs illustrated the formation of a protective layer after application of the biomaterials and that it was partially or totally removed after the erosion and abrasion. Raman spectroscopy combined with multivariate analysis could distinguish samples with respect to treatment efficacy. The APF_nHAP/MWCNT-GO composite has shown to be a promising material since it has binding characteristics both to the inorganic and organic portion of the dentin and reduced solubility. Mineral-to-matrix ratio (MMR) parameter analysis confirmed the binding capability of MWCNTO-GO-based materials to dentin.


Subject(s)
Carbon/chemistry , Dental Enamel/drug effects , Dentin/chemistry , Fluorides/chemistry , Nanostructures/chemistry , Nanotubes, Carbon/chemistry , Spectrum Analysis, Raman/methods , Animals , Biocompatible Materials/chemistry , Cattle , Durapatite/chemistry , Graphite/chemistry , Microscopy, Electron, Scanning , Multivariate Analysis , Saliva/metabolism , Solubility , Temperature
4.
Microsc Res Tech ; 82(9): 1489-1499, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31150562

ABSTRACT

The present study aims to evaluate the effect of brushing with fluoride dentifrice on teeth severely affected by erosion due to respiratory medicaments. Enamel (n = 50) and dentin (n = 50) bovine specimens were prepared and treated with artificial saliva (S-control), acebrofilin hydrochloride (AC), ambroxol hydrochloride (AM), bromhexine hydrochloride (BR), and salbutamol sulfate (SS) and subjected to cycles of demineralization (immersing in 3 mL, 1 min, three times a day at intervals of 1 hr, for 5 days) followed by remineralization (saliva, 37°C, 1 hr). Simulated brushing with fluoridated toothpaste was performed using 810 strokes in a reciprocal-action brushing simulator. Scanning electron microscopy, micro energy dispersive X-ray fluorescence (µ-EDXRF) spectroscopy and attenuated total reflection Fourier transform infrared (ATR FTIR) spectroscopy were then performed. µ-EDXRF images showed extensive erosion after treatment with all medicaments. SEM images showed enamel erosion in order SS > BR > AC = AM > S after brushing and fluoridation. FTIR results were in agreement. In case of dentin, µ-EDXRF measurements showed significant difference in mineral content (percent weight of calcium and phosphate) in SS + brushing + fluoridation treated enamel compared to control, while µ-EDXRF images showed erosive effects in the order SS > AM>BR > AC = S post brushing + fluoridation. SEM images showed erosion in the order SS > AM = BR > AC > S post brushing + fluoridation. Again, FTIR multivariate results were in agreement. Overall, our study shows that proper oral care is critical when taking certain medication. The study also demonstrates the possible use of FTIR for rapid clinical monitoring of tooth erosion in clinics.


Subject(s)
Bronchodilator Agents/adverse effects , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission , Spectrophotometry, Infrared , Tooth Demineralization/chemically induced , Tooth/drug effects , Animals , Cattle , Dental Enamel/chemistry , Dental Enamel/drug effects , Dental Enamel/ultrastructure , Dentin/chemistry , Dentin/drug effects , Dentin/ultrastructure , Tooth/chemistry , Tooth/ultrastructure
6.
J Biophotonics ; 11(4): e201700256, 2018 04.
Article in English | MEDLINE | ID: mdl-29160619

ABSTRACT

Tendinopathy, an important sports injury afflicting athletes and general public, is associated with huge economic losses. The currently used diagnostic tests are subjective, show moderate sensitivity and specificity; while treatment failures persist despite advances in therapy. This highlights the need for tendinopathy diagnostic and treatment monitoring tools. This study investigates tendon injury, natural healing and effect of treatment using ATR-FTIR complemented with histopathology. Control (C), injured (I) and treated (T) rat tendons were extracted 3, 7, 14 and 28 days post-injury/treatment, representing phases of healing; and subjected to hematoxylin & eosin staining as well as spectroscopy. While C showed no change, I- and T-related histological changes could be clearly observed in stained sections. ATR-FTIR spectra highlighted the biochemical changes within groups. Multivariate analysis could classify C, I and T with 75%; different days between groups with 84%; and different days within group with 65% efficiency. Results suggest that such analysis can not only identify C, I or T but also different phases of healing. Difference between I and T at different time points also suggest change in rate of healing. Further studies may help develop this technique for clinical diagnosis and treatment monitoring in future.


Subject(s)
Spectroscopy, Fourier Transform Infrared , Tendinopathy/diagnosis , Tendinopathy/therapy , Animals , Male , Multivariate Analysis , Rats , Rats, Wistar , Tendinopathy/pathology , Treatment Outcome
7.
Microsc Res Tech ; 81(2): 220-227, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29134721

ABSTRACT

Medicaments essential for alleviation of diseases may sometime adversely affect dental health by eroding the enamel, owing to their acidic nature. It is therefore highly desirable to be able to detect these effects quickly and reliably. In this study, we evaluated the erosive capacity of four most commonly prescribed respiratory disease syrup medicaments on enamel using micro-energy-dispersive X-ray fluorescence spectrometry (µ-EDXRF) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Fifty-five enamel fragments obtained from 30 bovine teeth were treated with artificial saliva (S), acebrofilin hydrochloride (AC), ambroxol hydrochloride (AM), bromhexine hydrochloride (BR), and salbutamol sulfate (SS); by immersing in 3 mL of respective solutions for 1 min, three times a day at intervals of 1 hr, for 5 days. µ-EDXRF analysis of enamel surface did not reveal significant erosion caused by the medications. However, ATR-FTIR showed a detectable shift in the phosphate (PO4 ) antisymmetric stretching mode (ν3 ) at ∼985 cm-1 for AM, BR, and SS, indicating erosion. Multivariate statistical analysis showed that AC, AM, SS, and BR could be classified with 70%, 80%, 100%, and 100% efficiency from S (control), further highlighting the ability of ATR-FTIR to identify degree of erosion. This suggests ATR-FTIR may be used to rapidly and nondestructively investigate erosive effects of medicaments.


Subject(s)
Dental Enamel/drug effects , Nonprescription Drugs/adverse effects , Spectroscopy, Fourier Transform Infrared , Tooth Erosion/chemically induced , Anti-Allergic Agents/adverse effects , Brompheniramine/adverse effects , Dental Enamel/pathology , Drug Combinations , Humans , Loratadine/adverse effects , Microscopy, Electron, Scanning , Molar/drug effects , Nasal Decongestants/adverse effects , Pseudoephedrine/adverse effects , Respiratory Tract Diseases/drug therapy , Spectrometry, X-Ray Emission/methods , Surface Properties/drug effects
8.
Biomed Opt Express ; 8(11): 5218-5227, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29188115

ABSTRACT

Most oral injuries are diagnosed by histopathological analysis of a biopsy, which is an invasive procedure and does not give immediate results. On the other hand, Raman spectroscopy is a real time and minimally invasive analytical tool with potential for the diagnosis of diseases. The potential for diagnostics can be improved by data post-processing. Hence, this study aims to evaluate the performance of preprocessing steps and multivariate analysis methods for the classification of normal tissues and pathological oral lesion spectra. A total of 80 spectra acquired from normal and abnormal tissues using optical fiber Raman-based spectroscopy (OFRS) were subjected to PCA preprocessing in the z-scored data set, and the KNN (K-nearest neighbors), J48 (unpruned C4.5 decision tree), RBF (radial basis function), RF (random forest), and MLP (multilayer perceptron) classifiers at WEKA software (Waikato environment for knowledge analysis), after area normalization or maximum intensity normalization. Our results suggest the best classification was achieved by using maximum intensity normalization followed by MLP. Based on these results, software for automated analysis can be generated and validated using larger data sets. This would aid quick comprehension of spectroscopic data and easy diagnosis by medical practitioners in clinical settings.

9.
Lasers Med Sci ; 32(9): 2063-2072, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28942528

ABSTRACT

The present study aimed to evaluate the erosive potential of four most commonly prescribed syrup medicaments for respiratory diseases. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy combined with multivariate statistical analysis and micro-energy-dispersive X-ray fluorescence spectrometry (µ-EDXRF) mapping was performed. Fifty-five root dentin fragments obtained from the buccal surface of 30 bovine teeth were prepared and divided into five experimental groups (n = 10): control-artificial saliva (S), acebrofilin hydrochloride (AC), ambroxol hydrochloride (AM), bromhexine hydrochloride (BR), and salbutamol sulfate (SS). The S group was stored only in artificial saliva and the other groups were treated with the medicaments (immersed for 1 min in 3 mL of the medication, three times daily, with 1-h intervals between the immersion cycles, during 5 days, 15 immersion cycles). There were a significant decrease in the Ca and P weight percentages (wt%) for dentin after medication treatments, except for AC (p > 0.05). Mineral content of dentin showed a clear gradation with increasing Ca and P wt% reduction in the order S < AC < AM < BR < SS. SS resulted in a significant increase in Ca/P ratio when compared to the control (p < 0.001). ATR-FTIR combined with multivariate, statistical analysis can quickly and reliably indicate extent of dentin erosion. Considering syrups with high-erosive potential should always follow with proper oral hygiene practices or search for an alternative medications void of such detrimental effects. Regular and prolonged use of these medicaments might bear the risk of causing erosion.


Subject(s)
Respiratory System Agents/adverse effects , Respiratory Tract Diseases/drug therapy , Spectrometry, X-Ray Emission/methods , Spectroscopy, Fourier Transform Infrared/methods , Tooth Erosion/chemically induced , Tooth Erosion/diagnosis , Animals , Area Under Curve , Calcium/analysis , Cattle , Dental Enamel/chemistry , Dentin/chemistry , Discriminant Analysis , Hydrogen-Ion Concentration , Phosphorus/analysis , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...