Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nature ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862028

ABSTRACT

Spaceflight induces molecular, cellular, and physiological shifts in astronauts and poses myriad biomedical challenges to the human body, which are becoming increasingly relevant as more humans venture into space1-6. Yet, current frameworks for aerospace medicine are nascent and lag far behind advancements in precision medicine on Earth, underscoring the need for rapid development of space medicine databases, tools, and protocols. Here, we present the Space Omics and Medical Atlas (SOMA), an integrated data and sample repository for clinical, cellular, and multi-omic research profiles from a diverse range of missions, including the NASA Twins Study7, JAXA CFE study8,9, SpaceX Inspiration4 crew10-12, plus Axiom and Polaris. The SOMA resource represents a >10-fold increase in publicly available human space omics data, with matched samples available from the Cornell Aerospace Medicine Biobank. The Atlas includes extensive molecular and physiological profiles encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiome data sets, which reveal some consistent features across missions, including cytokine shifts, telomere elongation, and gene expression changes, as well as mission-specific molecular responses and links to orthologous, tissue-specific murine data sets. Leveraging the datasets, tools, and resources in SOMA can help accelerate precision aerospace medicine, bringing needed health monitoring, risk mitigation, and countermeasures data for upcoming lunar, Mars, and exploration-class missions.

2.
Nat Microbiol ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862604

ABSTRACT

Maintenance of astronaut health during spaceflight will require monitoring and potentially modulating their microbiomes. However, documenting microbial shifts during spaceflight has been difficult due to mission constraints that lead to limited sampling and profiling. Here we executed a six-month longitudinal study to quantify the high-resolution human microbiome response to three days in orbit for four individuals. Using paired metagenomics and metatranscriptomics alongside single-nuclei immune cell profiling, we characterized time-dependent, multikingdom microbiome changes across 750 samples and 10 body sites before, during and after spaceflight at eight timepoints. We found that most alterations were transient across body sites; for example, viruses increased in skin sites mostly during flight. However, longer-term shifts were observed in the oral microbiome, including increased plaque-associated bacteria (for example, Fusobacteriota), which correlated with immune cell gene expression. Further, microbial genes associated with phage activity, toxin-antitoxin systems and stress response were enriched across multiple body sites. In total, this study reveals in-depth characterization of microbiome and immune response shifts experienced by astronauts during short-term spaceflight and the associated changes to the living environment, which can help guide future missions, spacecraft design and space habitat planning.

3.
Nat Commun ; 15(1): 4954, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862516

ABSTRACT

Spaceflight induces an immune response in astronauts. To better characterize this effect, we generated single-cell, multi-ome, cell-free RNA (cfRNA), biochemical, and hematology data for the SpaceX Inspiration4 (I4) mission crew. We found that 18 cytokines/chemokines related to inflammation, aging, and muscle homeostasis changed after spaceflight. In I4 single-cell multi-omics data, we identified a "spaceflight signature" of gene expression characterized by enrichment in oxidative phosphorylation, UV response, immune function, and TCF21 pathways. We confirmed the presence of this signature in independent datasets, including the NASA Twins Study, the I4 skin spatial transcriptomics, and 817 NASA GeneLab mouse transcriptomes. Finally, we observed that (1) T cells showed an up-regulation of FOXP3, (2) MHC class I genes exhibited long-term suppression, and (3) infection-related immune pathways were associated with microbiome shifts. In summary, this study reveals conserved and distinct immune disruptions occurring and details a roadmap for potential countermeasures to preserve astronaut health.


Subject(s)
Single-Cell Analysis , Space Flight , Transcriptome , Animals , Female , Male , Humans , Mice , Astronauts , Cytokines/metabolism , T-Lymphocytes/immunology , Sex Factors , Gene Expression Profiling , Oxidative Phosphorylation
4.
Res Sq ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37886447

ABSTRACT

Maintenance of astronaut health during spaceflight will require monitoring and potentially modulating their microbiomes, which play a role in some space-derived health disorders. However, documenting the response of microbiota to spaceflight has been difficult thus far due to mission constraints that lead to limited sampling. Here, we executed a six-month longitudinal study centered on a three-day flight to quantify the high-resolution microbiome response to spaceflight. Via paired metagenomics and metatranscriptomics alongside single immune profiling, we resolved a microbiome "architecture" of spaceflight characterized by time-dependent and taxonomically divergent microbiome alterations across 750 samples and ten body sites. We observed pan-phyletic viral activation and signs of persistent changes that, in the oral microbiome, yielded plaque-associated pathobionts with strong associations to immune cell gene expression. Further, we found enrichments of microbial genes associated with antibiotic production, toxin-antitoxin systems, and stress response enriched universally across the body sites. We also used strain-level tracking to measure the potential propagation of microbial species from the crew members to each other and the environment, identifying microbes that were prone to seed the capsule surface and move between the crew. Finally, we identified associations between microbiome and host immune cell shifts, proposing both a microbiome axis of immune changes during flight as well as the sources of some of those changes. In summary, these datasets and methods reveal connections between crew immunology, the microbiome, and their likely drivers and lay the groundwork for future microbiome studies of spaceflight.

5.
Environ Microbiome ; 17(1): 60, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36544228

ABSTRACT

Lake Hillier is a hypersaline lake known for its distinctive bright pink color. The cause of this phenomenon in other hypersaline sites has been attributed to halophiles, Dunaliella, and Salinibacter, however, a systematic analysis of the microbial communities, their functional features, and the prevalence of pigment-producing-metabolisms has not been previously studied. Through metagenomic sequencing and culture-based approaches, our results evidence that Lake Hillier is composed of a diverse set of microorganisms including archaea, bacteria, algae, and viruses. Our data indicate that the microbiome in Lake Hillier is composed of multiple pigment-producer microbes, including Dunaliella, Salinibacter, Halobacillus, Psychroflexus, Halorubrum, many of which are cataloged as polyextremophiles. Additionally, we estimated the diversity of metabolic pathways in the lake and determined that many of these are related to pigment production. We reconstructed complete or partial genomes for 21 discrete bacteria (N = 14) and archaea (N = 7), only 2 of which could be taxonomically annotated to previously observed species. Our findings provide the first metagenomic study to decipher the source of the pink color of Australia's Lake Hillier. The study of this pink hypersaline environment is evidence of a microbial consortium of pigment producers, a repertoire of polyextremophiles, a core microbiome and potentially novel species.

6.
Genes (Basel) ; 13(10)2022 10 21.
Article in English | MEDLINE | ID: mdl-36292799

ABSTRACT

The recent increase in publicly available metagenomic datasets with geospatial metadata has made it possible to determine location-specific, microbial fingerprints from around the world. Such fingerprints can be useful for comparing microbial niches for environmental research, as well as for applications within forensic science and public health. To determine the regional specificity for environmental metagenomes, we examined 4305 shotgun-sequenced samples from the MetaSUB Consortium dataset-the most extensive public collection of urban microbiomes, spanning 60 different cities, 30 countries, and 6 continents. We were able to identify city-specific microbial fingerprints using supervised machine learning (SML) on the taxonomic classifications, and we also compared the performance of ten SML classifiers. We then further evaluated the five algorithms with the highest accuracy, with the city and continental accuracy ranging from 85-89% to 90-94%, respectively. Thereafter, we used these results to develop Cassandra, a random-forest-based classifier that identifies bioindicator species to aid in fingerprinting and can infer higher-order microbial interactions at each site. We further tested the Cassandra algorithm on the Tara Oceans dataset, the largest collection of marine-based microbial genomes, where it classified the oceanic sample locations with 83% accuracy. These results and code show the utility of SML methods and Cassandra to identify bioindicator species across both oceanic and urban environments, which can help guide ongoing efforts in biotracing, environmental monitoring, and microbial forensics (MF).


Subject(s)
Metagenomics , Microbiota , Metagenomics/methods , Metagenome , Microbiota/genetics , Supervised Machine Learning , Cities
7.
Soc Netw Anal Min ; 11(1): 53, 2021.
Article in English | MEDLINE | ID: mdl-34122667

ABSTRACT

The recent pandemic of COVID-19 has not only shaken the healthcare but also economic structure around the world. In addition to these direct effects, it has also brought in some indirect difficulties owing to the information epidemic (hereafter termed as infodemic) on social media. We aimed to understand the nature of panic social media users in India are experiencing due to the flow of (mis)information. We further extend this investigation to other countries. We performed a cross-sectional study on 1075 social media users from India and 29 other countries. This revealed a significant increase in social media usage and the rise of panic (symbolizing a sense of alarm and/or fear) over time in India. Several of these behaviors are unique to social media users in India possibly because of later outbreak of COVID-19 and a prolonged uninterrupted lockdown. The amount of social media usage might not be causal but has a significant role in generating panic among the people in India. As multiple countries are entering into the second phase of lockdown, this study focused on India might provide a unique perspective of how various factors, including infodemic, affect the mental state of individuals around the globe. SUPPLEMENTARY INFORMATION: The online version supplementary material available at 10.1007/s13278-021-00750-2.

8.
Cell ; 184(13): 3376-3393.e17, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34043940

ABSTRACT

We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.


Subject(s)
Drug Resistance, Bacterial/genetics , Metagenomics , Microbiota/genetics , Urban Population , Biodiversity , Databases, Genetic , Humans
9.
Microbiome ; 9(1): 82, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33795001

ABSTRACT

BACKGROUND: Clean rooms of the Space Assembly Facility (SAF) at the Jet Propulsion Laboratory (JPL) at NASA are the final step of spacecraft cleaning and assembly before launching into space. Clean rooms have stringent methods of air-filtration and cleaning to minimize microbial contamination for exoplanetary research and minimize the risk of human pathogens, but they are not sterile. Clean rooms make a selective environment for microorganisms that tolerate such cleaning methods. Previous studies have attempted to characterize the microbial cargo through sequencing and culture-dependent protocols. However, there is not a standardized metagenomic workflow nor analysis pipeline for spaceflight hardware cleanroom samples to identify microbial contamination. Additionally, current identification methods fail to characterize and profile the risk of low-abundance microorganisms. RESULTS: A comprehensive metagenomic framework to characterize microorganisms relevant for planetary protection in multiple cleanroom classifications (from ISO-5 to ISO-8.5) and sample types (surface, filters, and debris collected via vacuum devices) was developed. Fifty-one metagenomic samples from SAF clean rooms were sequenced and analyzed to identify microbes that could potentially survive spaceflight based on their microbial features and whether the microbes expressed any metabolic activity or growth. Additionally, an auxiliary testing was performed to determine the repeatability of our techniques and validate our analyses. We find evidence that JPL clean rooms carry microbes with attributes that may be problematic in space missions for their documented ability to withstand extreme conditions, such as psychrophilia and ability to form biofilms, spore-forming capacity, radiation resistance, and desiccation resistance. Samples from ISO-5 standard had lower microbial diversity than those conforming to ISO-6 or higher filters but still carried a measurable microbial load. CONCLUSIONS: Although the extensive cleaning processes limit the number of microbes capable of withstanding clean room condition, it is important to quantify thresholds and detect organisms that can inform ongoing Planetary Protection goals, provide a biological baseline for assembly facilities, and guide future mission planning. Video Abstract.


Subject(s)
Metagenomics , Space Flight , Environment, Controlled , Humans , Metagenome , Spacecraft
10.
Nat Commun ; 12(1): 1660, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712587

ABSTRACT

In less than nine months, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) killed over a million people, including >25,000 in New York City (NYC) alone. The COVID-19 pandemic caused by SARS-CoV-2 highlights clinical needs to detect infection, track strain evolution, and identify biomarkers of disease course. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs and a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, viral, and microbial profiling. We applied these methods to clinical specimens gathered from 669 patients in New York City during the first two months of the outbreak, yielding a broad molecular portrait of the emerging COVID-19 disease. We find significant enrichment of a NYC-distinctive clade of the virus (20C), as well as host responses in interferon, ACE, hematological, and olfaction pathways. In addition, we use 50,821 patient records to find that renin-angiotensin-aldosterone system inhibitors have a protective effect for severe COVID-19 outcomes, unlike similar drugs. Finally, spatial transcriptomic data from COVID-19 patient autopsy tissues reveal distinct ACE2 expression loci, with macrophage and neutrophil infiltration in the lungs. These findings can inform public health and may help develop and drive SARS-CoV-2 diagnostic, prevention, and treatment strategies.


Subject(s)
COVID-19/genetics , COVID-19/virology , SARS-CoV-2/genetics , Adult , Aged , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , Drug Interactions , Female , Gene Expression Profiling , Genome, Viral , HLA Antigens/genetics , Host Microbial Interactions/drug effects , Host Microbial Interactions/genetics , Humans , Male , Middle Aged , Molecular Diagnostic Techniques , New York City/epidemiology , Nucleic Acid Amplification Techniques , Pandemics , RNA-Seq , SARS-CoV-2/classification , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
12.
bioRxiv ; 2020 May 01.
Article in English | MEDLINE | ID: mdl-32511352

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused thousands of deaths worldwide, including >18,000 in New York City (NYC) alone. The sudden emergence of this pandemic has highlighted a pressing clinical need for rapid, scalable diagnostics that can detect infection, interrogate strain evolution, and identify novel patient biomarkers. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs, plus a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, bacterial, and viral profiling. We applied both technologies across 857 SARS-CoV-2 clinical specimens and 86 NYC subway samples, providing a broad molecular portrait of the COVID-19 NYC outbreak. Our results define new features of SARS-CoV-2 evolution, nominate a novel, NYC-enriched viral subclade, reveal specific host responses in interferon, ACE, hematological, and olfaction pathways, and examine risks associated with use of ACE inhibitors and angiotensin receptor blockers. Together, these findings have immediate applications to SARS-CoV-2 diagnostics, public health, and new therapeutic targets.

13.
Psychol Aging ; 26(2): 295-307, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21553984

ABSTRACT

Studies on decision making have come to challenge the idea that having more choice is necessarily better. The Medicare prescription drug program (Part D) has been designed to maximize choice for the consumer but has simultaneously created a highly complex decision task with dozens of options. In this study, in a sample of 121 adults, we examined the impact that increasing choice options has on decision-making abilities in older versus younger adults. Consistent with our hypotheses, we found that participants performed better with less choice versus more choice, and that older adults performed worse than younger adults across conditions. We further examined the role that numeracy may play in making these decisions and the role of more traditional cognitive variables such as working memory, executive functioning, intelligence, and education. Finally, we examined how personality style may interact with cognitive variables and age in decision making. Regression analysis revealed that numeracy is related to performance across the lifespan. When controlling for additional measures of cognitive ability, we found that although age was no longer associated with performance, numeracy remained significant. In terms of decision style, personality characteristics were not related to performance. Our results add to the mounting evidence for the critical role of numeracy in decision making across decision domains and across the lifespan.


Subject(s)
Aptitude , Decision Making , Mathematics , Medicare Part D , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Educational Status , Executive Function , Female , Humans , Intelligence , Male , Memory, Short-Term , Middle Aged , Neuropsychological Tests , Personality , United States , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...