Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(43): 17398-17408, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37796034

ABSTRACT

Multifunctional self-powered energy harvesting devices have attracted significant attention for wearable, portable, IoT and healthcare devices. In this study, we report transition metal dichalcogenide (TMDC) ternary alloy (Mo0.5W0.5S2)-based self-powered photosensitive vertical triboelectric nanogenerator (TENG) devices, where the ternary alloy functions both as a triboelectric layer and as a photoabsorbing material. The scalable synthesis of the highly crystalline Mo0.5W0.5S2 ternary alloy can overcome the limitations of binary TMDCs (MoS2, WS2) by utilizing its superior optical characteristics, enabling this semiconductor-based TENG device to simultaneously exhibit photoelectric and triboelectric properties. Benefiting from visible light absorption, this vertical TENG device generates higher triboelectric outputs and exhibits excellent power harvesting properties under visible light illumination. The open circuit voltage and short circuit currents of the devices under illumination (410 nm, 525 µW cm-2) are enhanced by 62% and 253%, respectively, while in the darkness, a very high photoresponsivity of ∼45.5 V mW-1 (voltage mode) is exhibited, indicating the superior energy harvesting potential under ultralow illumination. Furthermore, the energy harvesting ability from regular human activities and the operation as artificial e-skin expands the multi-functionality of this TENG device, paving a pathway for simultaneous mechanical and photonic energy harvesting with self-powered sensing.

2.
Nanotechnology ; 34(43)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37478833

ABSTRACT

In addition to the superior electrical and optoelectronic attributes, ultrathin two-dimensional transition metal dichalcogenides (TMDCs) have evoked appreciable attention for their piezoelectric properties. In this study, we report, the piezoelectric characteristics of large area, chemically exfoliated TMDCs and their heterostructures for the first time, as verified by piezoelectric force microscopy measurements. Piezoelectric output voltage response of the MoS2-WSe2heterostructure piezoelectric nanogenerator (PENG) is enhanced by ∼47.5% if compared with WSe2and ∼29% if compared to MoS2PENG, attributed to large band offset induced by heterojunction formation. This allows the scalable fabrication of self-powered energy harvesting PENGs, which can overcome the various shortcomings of complicated synthesis processes, complex fabrication steps, low yield, and poor stability. The fabricated flexible, self-powered MoS2-WSe2heterostructure nanogenerator exhibits piezoelectric output ∼46 mV under a strain of ∼0.66% yielding a power output ∼12.3 nW, which offers better performance than other two-dimensional material based piezoelectric devices and also reveals the ability of bio-mechanical energy harvesting. This cost effective approach to fabricate eco-friendly MoS2-WSe2based fatigue free, superior performance piezoelectric-nanogenerators can be utilized to evolve flexible energy harvesting devices and may also be attractive as a self-powered, smart wearable sensor devices.

3.
ACS Appl Mater Interfaces ; 14(30): 34875-34883, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35880297

ABSTRACT

The concept of alloy engineering has emerged as a viable technique toward tuning the band gap as well as engineering the defect levels in two-dimensional transition-metal dichalcognides (TMDCs). The possibility of synthesizing these ultrathin TMDC materials through a chemical route has opened up realistic possibilities to fabricate hybrid multifunctional devices. By synthesizing nanosheets with different composites of MoS2xSe2(1-x) (x = 0 - 1) using simple chemical methods, we systematically investigate the photoresponse properties of three terminal hybrid devices by decorating large-area graphene with these nanosheets (x = 0, 0.5, 1) in 2D-2D configurations. Among them, the graphene-MoSSe hybrid phototransistor exhibits optoelectronic properties superior to those of its binary counterparts. The device exhibits extremely high photoresponsivity (>104 A/W), low noise equivalent power (∼10-14 W/Hz0.5), and higher specific detectivity (∼1011 jones) in the wide UV-NIR (365-810 nm) range with excellent gate tunability. The broad-band light absorption of MoSSe, ultrafast charge transport in graphene, and controllable defect engineering in MoSSe makes this device extremely attractive. Our work demonstrates the large-area scalability with the wafer-scale production of MoS2xSe2(1-x) alloys, having important implications toward the facile and scalable fabrication of high-performance optoelectronic devices and providing important insights into the fundamental interactions between van der Waals materials.

4.
ACS Appl Mater Interfaces ; 14(4): 5775-5784, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35068147

ABSTRACT

Recent progress in the synthesis of highly stable, eco-friendly, cost-effective transition-metal dichalcogenide (TMDC) quantum dots (QDs) with their broadband absorption spectra and wavelength selectivity features have led to their increasing use in broadband photodetectors. With the solution-based processing, we demonstrate a superlarge (∼0.75 mm2), ultraviolet-visible (UV-vis) broadband (365-633 nm) phototransistor made of WS2 QDs-decorated chemical vapor deposited (CVD) graphene as the active channel with extraordinary stability and durability under ambient conditions (without any degradation of photocurrent until 4 months after fabrication). Here, colloidal zero-dimensional (0D) WS2 QDs are used as the photoabsorbing material, and graphene acts as the conducting channel. A high photoresponsivity (3.1 × 102 A/W), moderately high detectivity (∼8.9 × 108 Jones), and low noise equivalent power (∼9.7 × 10-11 W/Hz0.5) are obtained at a low bias voltage (Vds = 1 V) at an illumination of 365 nm with optical power as low as ∼0.8 µW/cm2, which can be further tuned by modulating the gate bias. While comparing the photocurrent between two different morphologies of WS2 [QDs and two-dimensional (2D) nanosheets], a significant enhancement of photocurrent is observed in the case of QD-based devices. Ab initio density functional theory (DFT)-based calculations further support our observation, revealing the role of quantum confinement in enhanced photoresponse. Our work reveals a strategy toward developing a scalable, cost-effective, high-performance hybrid mixed-dimensional (2D-0D) photodetector with graphene-WS2 QDs for next-generation optoelectronic applications.

5.
Nanoscale ; 13(37): 15819-15829, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34528991

ABSTRACT

Benefiting from the advantages of low cost, light weight and mechanical flexibility, piezoelectric nanogenerators have the potential for application in renewable energy harvesting from various unexplored sources. Here, we report the demonstration of the record efficiency of flexible piezoelectric nanogenerators (PENG) using composites of polyvinylidene fluoride (PVDF) and chemically exfoliated tungsten disulfide (WS2) nanosheets, which are found to be strongly photosensitive, making them attractive for self-powered optical devices. The presence of two-dimensional (2D) WS2 nanosheets in the PVDF matrix plays a dual role in enhancing the nucleation of the electroactive ß-phase as well as inducing strong photosensitivity in the nanocomposite. The PVDF-WS2 composed flexible device is able to produce an enormously high output voltage of ∼116 V (for an impact of 105 kPa) and a piezoelectric energy conversion efficiency of ∼25.6%, which is the highest among the reported values for PVDF-2D material based self-poled piezoelectric nanogenerators. This self-poled piezo-phototronic device exhibits strain-dependent photocurrent at zero bias and exhibits a responsivity of 6.98 × 10-3 A W-1 at 0.75% strain under the illumination of 410 nm. The fabricated PENG is also able to harvest energy from routine human activities (finger tapping, writing on paper, mouse clicking, etc.) and movement of human body parts. These results open up a new horizon in piezo-phototronic materials through the realization of photosensitive multifunctional PENGs, which can be scaled up for fabricating compact, high performance, portable and self-powered wearable electronic devices for smart sensor applications.

6.
Nanotechnology ; 31(14): 145701, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-31835257

ABSTRACT

While two-dimensional (2D) layered MoS2 nanosheets have been extensively studied owing to their fascinating optoelectronic properties, less attention has been paid to the corresponding zero-dimensional nano-crystals. In this contribution, we report the efficacy of MoS2 nanocrystals for their size tunable properties for optical and photocatalytic applications. We have synthesized differently sized (10-70 nm) crystalline, hexagonal 2H-MoS2 nanoparticles (NPs) dispersed in DMF solvent using a simple exfoliation technique. Synthesized NPs are found to exhibit size-dependent optical properties and excitation-dependent fluorescence characteristics in the visible region, which are otherwise not observed in bulk or 2D MoS2 layers. Size tunable bandgap and broad absorbance and emission spectrum covering the visible range could be exploited in the fabrication of various opto-electronic devices. Charge carrier emission dynamics of differently sized MoS2 NPs are investigated using time correlated single photon counting (TCSPC) spectroscopic technique. We found two time components, one in the order of several hundreds of ps, which arises due to the radiative recombination of charge carriers, while the other one is of the order of a few ns, which emanates from the defect states of MoS2 NPs. The average time constants are found to decrease with increase in particle size. A noticeable photocatalytic activity of the synthesized MoS2 NPs under visible light illumination for the degradation of brilliant green dye is also demonstrated for the first time and the effect of size variation of NPs in the dye degradation process is reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...