Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Fluoresc ; 24(3): 719-25, 2014 May.
Article in English | MEDLINE | ID: mdl-24337874

ABSTRACT

This paper reports the double confinement of 4,4-diaminodiphenyl sulfone (Dapsone) inside γ-cyclodextrin (CD) in presence of surfactants (cationic, anionic and nonionic) using steady-state and time-resolved fluorescence spectroscopy. Interpretation of fluorescence spectra, fluorescence anisotropy and time resolved fluorescence decay of the γ-CD • Dapsone•micellar system hints at lesser microviscosity and the partial release of the probe molecule from the supramolecular host-guest complex in ionic micelles, of which greater in cationic micelles, but due to greater restriction and rigidity in presence of non-ionic micelle makes the probe more rigidly inside CD. Changes in computed rotational decay also corroborate the above findings.


Subject(s)
Anions/chemistry , Cations/chemistry , Dapsone/chemistry , Fluorescence Polarization , Spectrometry, Fluorescence , Surface-Active Agents/chemistry , gamma-Cyclodextrins/chemistry , Fluorescence , Fluorescent Dyes , Micelles , Molecular Structure , Viscosity
2.
J Phys Chem B ; 115(37): 10983-9, 2011 Sep 22.
Article in English | MEDLINE | ID: mdl-21827188

ABSTRACT

Photophysics of the 2-[4-(dimethylamino) styryl]-1-methylquinolinium iodide (DASQMI) molecule has been studied in different solvents by steady-state and time-resolved emission spectroscopy and also with quantum chemical calculations. The probe molecule exhibits a strong solvent-polarity-dependent characteristic. The low-energy fluorescence band of DASQMI shows an anomalous 40 nm blue shift in water from that in dimethyl sulfoxide (DMSO); though in deuterium oxide the normal trend of red shift was observed. A marked increase in intensity of this band at 77 K and an increase in lifetime in viscous solvent point clearly to the intramolecular charge-transfer (ICT) character of the low-energy band. From the temperature-dependent emission and emission spectra in mixed solvents, the negative solvatochromism of DASQMI has been established, which means that the ICT state moves toward ground state with polarity and hydrogen-bond ability and beyond a critical dielectric constant coupled with protic nature of the solvent ground state gets further stabilized to show anomalous blue shift. In ethanol, below a critical temperature, 253 K, a blue shift starts due to greater solvent molecular polarization. A third long-lifetime component with dominant 75% amplitude was observed only in aqueous solution and may be due to the cis-isomer of hydrophobic DASQMI, a stable form in the excited state predicted from polarizable continuum model (PCM) calculations in water with 6-31G+(d,p) as basis set.

3.
J Phys Chem B ; 114(32): 10442-50, 2010 Aug 19.
Article in English | MEDLINE | ID: mdl-20701379

ABSTRACT

The effect of reverse micelle environment on the binding mechanism of 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide (DASPMI) with Bovine Serum Albumin (BSA) compared with that in buffer solution has been investigated in this paper with the help of steady state and time-resolved emission spectroscopy along with molecular docking to have a correct picture about binding. The binding of DASPMI with attachment efficiency of 30% and 70% at site I (subdomain IIA) and site II (subdomain IIIA) of BSA, respectively, in buffer solution gets reversed inside a reverse micelle. The bigger cavity size of site II in buffer solution ushers the dye with increased attachment efficiency and in reverse micelle change in pi-stacking and hydrophobic interaction control the attachment efficiency. The calculated Forster distance gets curtailed as the environment changes from buffer to reverse micelle. The binding becomes stronger with a smaller gap between the probe and Trp-214 inside the reverse micelle than that in buffer solution.


Subject(s)
Fluorescent Dyes/chemistry , Ions/chemistry , Micelles , Pyridinium Compounds/chemistry , Serum Albumin/chemistry , Animals , Anisotropy , Binding Sites , Cattle , Computer Simulation , Humans , Models, Molecular , Molecular Structure , Protein Conformation , Spectrometry, Fluorescence , Thermodynamics
4.
J Phys Chem B ; 114(5): 2044-50, 2010 Feb 11.
Article in English | MEDLINE | ID: mdl-20088531

ABSTRACT

The mode of binding of 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide (DASPMI) with calf thymus DNA as revealed from different steady state and time-resolved emission spectroscopic measurements has been reported in this paper. Fluorescence enhancement of DASPMI and its quenching by potassium iodide (KI) points to groove binding of dye with ct-DNA, rather than intercalation in the ct-DNA helix. An increase in steady state anisotropy and fluorescence lifetime hints at binding with ct-DNA. The value of binding constant from emission and association constant from circular dichroic spectrum also indicates weak binding. The strong dependence on ionic strength or salt in controlling the binding of DASPMI with ct-DNA by electrostatic interaction confirms groove binding. The high semicone angle of DASPMI in ct-DNA certainly rules out the possibility of intercalated bonding. A theoretical modeling shows that the probe is bound to ct-DNA as a crescent with a curvature of 11.35 A, which is the previously known curvature of probe in the minor groove.


Subject(s)
DNA/chemistry , Fluorescent Dyes/chemistry , Pyridinium Compounds/chemistry , Animals , Cattle , Circular Dichroism , Models, Molecular , Potassium Iodide/chemistry , Spectrometry, Fluorescence
5.
J Phys Chem B ; 113(41): 13560-5, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19761273

ABSTRACT

The interaction of anionic micelle sodium dodecyl sulfate (SDS) and amphiphilic block copolymers polyethylene-b-polyethylene glycol (PE-b-PEG) and the sharp change of excited-state charge-transfer complex photophysics of 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide (DASPMI) inside of the supramolecular assembly have been addressed in the paper. The dramatic enhancement of emission intensity of DASPMI incorporated inside of the nanostructure formed by micellar and polymeric chains indicates a completely different environment compared to that in the water and micellar system. A huge increase in the rotational relaxation time obtained from time-resolved anisotropy decay and the value of the order parameter is indicative of a very restrictive regime in the self-assembly system. The wobbling and translational motion of the probe is also restricted inside of the micelle-polymer aggregate due to the presence of polymer chains. The translational diffusion coefficient is drastically reduced due to the aggregation.

6.
Bioorg Med Chem Lett ; 15(16): 3737-43, 2005 Aug 15.
Article in English | MEDLINE | ID: mdl-15993066

ABSTRACT

Considering the potential of selective adenosine A3 receptor subtype ligands in the development of prospective therapeutic agents, an attempt has been made to explore physicochemical requirements of 1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives for A3 receptor binding. In this study, lipophilicity (logP), physicochemical substituent constants (pi, MR, sigma p) of phenyl ring substituents, and Wang-Ford charges of common atoms of the quinoxaline nucleus (calculated from molecular electrostatic potential surface of energy-minimized geometry using AM1 technique) were used as independent variables along with suitable dummy parameters. The best multiple linear regression (MLR) equation obtained from factor analysis (FA-MLR) as the preprocessing step could explain and predict 72.6% and 65.3%, respectively, of the variance of the binding affinity. The same equation also emerged as the best equation in the population of 100 equations obtained from genetic function approximation (GFA-MLR). The results suggested that presence of an electron-withdrawing group at the para position of the phenyl ring would be favorable for the binding affinity. Again, the presence of a nitro group at position R1 increases the binding affinity. When factor scores were used as predictor variables in the principal component regression analysis, the resultant model showed 78.6% explained variance and 63.1% predicted variance. The best equation derived from G/PLS could explain and predict 74.4% and 64.8%, respectively. The results have suggested the importance of Wang-Ford charges of atoms C15 and C19, apart from positive contributions of electron-withdrawing para substituents of the variance of the phenyl ring and nitro group at the R1 position.


Subject(s)
Adenosine A3 Receptor Antagonists , Quantitative Structure-Activity Relationship , Quinoxalines/pharmacology , Binding, Competitive/drug effects , Drug Design , Molecular Structure , Quinoxalines/chemistry , Regression Analysis
7.
J Mol Model ; 11(6): 516-24, 2005 Nov.
Article in English | MEDLINE | ID: mdl-15928917

ABSTRACT

Binding affinity data [Bioorg Med Chem (2004) 12:613-623] of thiazole and thiadiazole derivatives (n = 30) for the human adenosine A3 receptor subtype have been subjected to 3D-QSAR (Quantitative structure-activity relationships) analyses by molecular shape analysis (MSA) and molecular field analysis (MFA) techniques using Cerius2 Version 4.8. In the case of the MSA, the major steps were (1) generation of conformers and energy minimization; (2) hypothesizing an active conformer (global minimum of the most active compound); (3) selecting a candidate shape-reference compound (based on the active conformation); (4) performing pairwise molecular superimposition using the maximum common subgroup (MCSG) method; (5) measuring molecular shape commonality using MSA descriptors; (6) determining other molecular features by calculating spatial, electronic and conformational parameters; (7) selection of conformers; (8) generation of QSAR equations by genetic function algorithm (GFA) or stepwise regression. The best 3D-QSAR equation (MSA) obtained from GFA technique shows 70.0% predicted variance (leave-one-out) and 77.7% explained variance. This equation shows the importance of Jurs descriptors (atomic charge weighted positive surface area, relative negative charge and relative positive charge surface area), partial moment of inertia, energy of the most stable conformer and the ratio of common overlap steric volume to volume of individual molecules. In the case of stepwise regression, the best relation showed 46.1% predicted variance and 72.3% explained variance. In the case of MFA, the major steps were (1) generating conformers and energy minimization; (2) matching atoms using a maximum common substructure (MCS) search and aligning molecules using the default options; (3) setting MFA preferences (rectangular grid with 2 A step size, charges by the Gasteiger algorithm, H+ and CH3 as probes); (4) creating the field; (5) analysis by the Genetic partial least squares (G/PLS) method. The equation obtained was of excellent statistical quality: 96.1% explained variance and 71.6% predicted variance. Statistically reliable 3D-QSAR models obtained from this study suggest that these techniques could be useful to design potent A3 receptor antagonists.


Subject(s)
Adenosine A3 Receptor Antagonists , Quantitative Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology , Humans , Models, Molecular , Molecular Conformation , Receptor, Adenosine A3/metabolism
8.
Bioorg Med Chem ; 13(4): 1159-65, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15670924

ABSTRACT

Binding affinity data of thiazole and thiadiazole derivatives (n=30) for human adenosine A3 receptor subtype have been subjected to Quantitative Structure-Activity Relationship (QSAR) analysis using quantum chemical and hydrophobicity parameters. Wang-Ford charges of the common atoms of the compounds [calculated from molecular electrostatic potential surface of energy minimized geometry using Austin Model 1 (AM1) technique] were used as independent variables apart from partition coefficient (logP) and suitable dummy parameters. The variables for the multiple regression analyses were selected based on principal component factor analysis (FA), and generated equations were statistically validated using leave-one-out technique. The best equation thus obtained explained and predicted 74.4% and 68.9% respectively of the variance of the binding affinity. The results suggested importance of Wang-Ford charges of atoms C2, C5 and C7. Furthermore, the A3 binding affinity increases with decrease of lipophilicity of the compounds and in the presence of methyl or ethyl substituent at R position. Again, the binding affinity decreases in the presence of tert-butyloxy group at R position. When factor scores were used as predictor variables in principal component regression analysis, the resulted model showed 87.0% predicted variance and 89.5% explained variance. The data set was also modeled using genetic function approximation (GFA) technique. The best two equations derived from GFA show better predicted variance values (0.753 and 0.739) than that found in case of the best equation derived from FA. However, considerable intercorrelation was found between two predictor variables in case of GFA derived equations. GFA derived equations show importance of Wang-Ford charges of different atoms of the thiazole/thiadiazole nucleus and phenyl ring (S9, X8 and C2, the effects of the first two being predominant) along with similar impact of lipophilicity and R group on the binding affinity as found in case of the FA derived relation.


Subject(s)
Adenosine A3 Receptor Antagonists , Thiazoles/chemistry , Thiazoles/pharmacology , Humans , Quantitative Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...