Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38478318

ABSTRACT

This study assessed the toxicity of the Sheathmar pesticide on Oreochromis mossambicus. The 96-h median lethal concentration (LC50) was determined using probit analysis, with survivability assessed using general threshold survival models (GUTS). Over 45 days, fish exposed to sublethal Sheathmar doses were studied for changes in growth, blood profiles, and liver enzymes. According to the findings, the LC50 values of Sheathmar for Oreochromis mossambicus at different time intervals were determined as follows: 3016.64 µg/l at 24 h, 2723.13 µg/l at 48 h, 2415.45 µg/l at 72 h, and 2154.87 µg/l at 96 h. The GUTS-SD model effectively predicted fish survivability after Sheathmar exposure. Sublethal exposure led to significant alterations in growth and hematological, biochemical, and stress enzyme parameters in Oreochromis mossambicus. Moreover, the correlation matrix, integrated biomarker response (IBR), and biomarker response index (BRI) highlighted significant impacts on multiple biomarkers in Oreochromis mossambicus. Thus, the results underscore the harmful effects of Sheathmar on Oreochromis mossambicus, indicating a need for further study and mitigation.

2.
Environ Toxicol Pharmacol ; 106: 104360, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38176602

ABSTRACT

Anthropogenic activities are increasing fluoride concentration in watercourses. The present study focuses on the sublethal toxicity of sodium fluoride during sub-chronic and chronic time periods in the freshwater fish Anabas testudineus. The 96-hour LC50 value for fluoride was found to be 616.50 mg/L. Excessive mucous production and hyper excitability, followed by loss of balance, were seen in fish under acute fluoride exposure. Significant reduction in yield and specific growth rate of fish were assessed at 15, 30 and 45-days exposure intervals. Different bio-indicators like Hepatosomatic-index, Gonadosomatic-index and fecundity were reduced significantly in fish exposed to 10% (61.6 mg/L) and 20% (123.2 mg/L) of 96 h of LC50 values of fluoride in comparison to control. Toxicant concentrations directly correlated with parameter lowering. Fluoride exposure increased plasma glucose, creatinine, AST, and ALT and reduced total RBC, haemoglobin content, Hct (%), plasma protein, and cholesterol. Moreover, fluoride exposure significantly reduces the mitochondrial membrane potential in liver. This may result in metabolic depression, haematological, biochemical, and enzymological stress. The in-silico structural analysis predicts that fluoride may impede cytochrome c oxidase of the electron transport system, hence inhibiting mitochondrial functionality. These findings collectively highlight the urgent need for stringent regulation and monitoring of fluoride levels in freshwater ecosystems, as the subchronic and chronic effects observed in A. testudineus may have broader implications for aquatic ecosystems.


Subject(s)
Mitochondrial Diseases , Perches , Animals , Sodium Fluoride/toxicity , Fluorides/toxicity , Ecosystem , Liver
3.
Environ Sci Pollut Res Int ; 29(58): 87319-87333, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35802337

ABSTRACT

Lactic and formic acid are two commonly found monocarboxylic organic acids. Lactic acid is discharged into the water bodies as acidic industrial effluent from the food, cosmetic, chemical, and pharmaceutical industries, whereas formic acid is discharged from various paper, leather tanning, and textile processing industries. The present study investigated the toxicity of both organic acids upon the benthic oligochaete worm Tubifex tubifex. The 96-h median lethal concentration (LC50) values for lactic and formic acid are determined as 143.81 mg/l and 57.99 mg/l respectively. The effects of two sublethal concentrations (10% and 30% of 96 h LC50) of these acids on differential expression of oxidative stress enzymes are investigated. The comparative analysis of acute toxicity demonstrates that formic acid exposure is more detrimental to T. tubifex than lactic acid. The in silico structural analysis predicts that formic acid can interact with cytochrome c oxidase of the electron transport system and thereby inhibits its functionality and induces reactive oxygen species production. Integrated biomarker response (IBR) analysis illustrates that overall oxidative stress of formic acid to T. tubifex is significantly higher than that of lactic acid, which supports the structural analysis. It is concluded from this study that toxicokinetic-toxicodynamic and species sensitivity distributions studies are helpful for ecological risk management of environmental toxicants.


Subject(s)
Oligochaeta , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Lethal Dose 50 , Formates , Lactic Acid
4.
Environ Sci Pollut Res Int ; 29(20): 30622-30637, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34993779

ABSTRACT

The present study evaluated the homology modelling, in silico prediction and characterization of Cyprinus carpio cytochrome P450, as well as molecular docking experiments between the modelled protein and the surfactants sodium dodecyl sulphate (SDS), sodium laureth sulphate (SLES) and cetylpyridinium chloride (CPC). Homology modelling of cytochrome P450 was performed using the best fit template structure. The structure was optimized with 3D refine, and the ultimate 3D structure was checked with PROCHEK and ERRATA. ExPASy's ProtParam was likewise used to analyse the modelled protein's physiochemical and stereochemical attributes. To establish the binding pattern of each ligand to the targeted protein and its effect on the overall protein conformation, molecular docking calculations and protein-ligand interactions were performed. Our in silico analysis revealed that hydrophobic interactions with the active site amino acid residues of cytochrome p450 were more prevalent than hydrogen bonds and salt bridges. The in vivo analysis exhibited that exposure of fish to sublethal concentrations (10% and 30% of 96 h LC50) of SDS (0.34 and 1.02 mg/l), CPC (0.002 and 0.006 mg/l) and SLES (0.69 and 2.07 mg/l) at 15d, 30d and 45d adversely affected the oxidative stress and antioxidant enzymes (CAT, SOD, GST, GPx and MDA) in the liver of Cyprinus carpio. As a result, the study suggests that elicited oxidative stress, prompted by the induction of antioxidant enzymes activity, could be attributable to the stable binding of cytochrome P450 with SDS, CPC and SLES which ultimately leads to the evolution of antioxidant enzymes for its neutralization.


Subject(s)
Carps , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Carps/metabolism , Cetylpyridinium/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Ligands , Molecular Docking Simulation , Oxidative Stress , Sodium Dodecyl Sulfate/analogs & derivatives , Surface-Active Agents/pharmacology
5.
Toxicol Mech Methods ; 32(2): 132-144, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34445924

ABSTRACT

The purpose of this work is to evaluate the homology modeling, in silico prediction, and characterization of somatotropin and erythropoietin from Cyprinus carpio as well as molecular docking and simulation experiments between the modeled proteins and surfactants sodium dodecyl sulfate (SDS), sodium laureth sulfate (SLES) and cetylpyridinium chloride (CPC). Using the best fit template structure, homology modeling of somatotropin and erythropoietin of Cyprinus carpio respectively was conducted. The model structures were improved further with 3Drefine, and the final 3D structures were verified with PROCHEK, ERRATA and ProQ. The physiochemical, as well as the stereochemical parameters of the modeled proteins, were evaluated using ExPASy's ProtParam. Molecular docking calculations, protein-ligand interactions, and protein flexibility analysis were carried out to determine the binding pattern of each ligand to the targeted proteins and their effect on the overall proteins' conformation. Our in silico analysis showed that hydrophobic interactions with the active site amino acid residues of the modeled proteins (somatotropin and erythropoietin) were more prevalent than hydrogen bonds and salt bridges that affect the flexibility and stability of the somatotropin and erythropoietin as revealed from our protein flexibility analysis. The in vivo analysis showed that sublethal concentrations of SDS, SLES, and CPC negatively affected the growth and hematological parameters of Cyprinus carpio. Hence, it may be inferred from the study that the alterations in the flexibility of somatotropin and erythropoietin of Cyprinus carpio upon addition of SDS, CPC and SLES might be attributable to the reduction in growth and hematological parameters.


Subject(s)
Carps , Hematology , Animals , Cetylpyridinium , Molecular Docking Simulation , Sodium Dodecyl Sulfate/analogs & derivatives , Sodium Dodecyl Sulfate/toxicity , Surface-Active Agents/toxicity
6.
Article in English | MEDLINE | ID: mdl-34390845

ABSTRACT

The present study was aimed to evaluate the toxic effects of a commonly used synthetic pyrethroid, λ cyhalothrin on the common carp, Cyprinus carpio L. The results depicted that 96 h LC50 value of λ cyhalothrin to the fish was 1.48 µg l-1. During 45 days of chronic exposure a significant reduction (p < 0.05) in the RBC, hemoglobin, and hematocrit value of fish was observed in λ cyhalothrin treated fish. Blood glucose, cholesterol and creatinine levels increased significantly, while total protein and albumin were significantly decreased (p < 0.05) in the exposed fish. Moreover, alanine aminotransferase and aspartate aminotransferase levels in the blood also increased significantly (p < 0.05) in the treated fish. In gills and liver, glutathione S-transferase (GST) and glutathione peroxidase (GPx) and in liver GST exhibited a significant initial augmentation followed by a subsequent reduction while catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) level increased markedly with incrementing concentrations of λ cyhalothrin in both the organs. Acetylcholinesterase (AchE) activity in both gills and liver decreased in exposed fish upon addition λ cyhalothrin. However, the hazardous effects of λ cyhalothrin on C. carpio were characterized and portrayed by the development of integrated biomarker response (IBR), and biomarker response index (BRI). GUTS-SD and IT modeling were implied for a better interpretation of the toxicity. These results indicate that exposure to λ cyhalothrin alters the survivability at the acute level and the activity of hematological, plasma biochemical as well as enzymological and stress parameters (in gills and liver) at the sublethal level in C. carpio.


Subject(s)
Carps/metabolism , Nitriles/toxicity , Pyrethrins/toxicity , Acetylcholinesterase/metabolism , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Carps/blood , Carps/growth & development , Catalase/metabolism , Environmental Exposure , Gills/drug effects , Glutathione Peroxidase/metabolism , Glutathione Transferase/metabolism , Insecticides/toxicity , Oxidative Stress/drug effects , Superoxide Dismutase/metabolism
7.
Article in English | MEDLINE | ID: mdl-33556537

ABSTRACT

The present study was performed to determine the acute toxicity of sodium laureth sulfate (SLES) and its sublethal effects on oxidative stress enzymes in benthic oligochaete worm Tubifex tubifex. The results showed that 96 h median lethal concentration (LC50) value of SLES for Tubifex tubifex is 21.68 mg/l. Moreover exposed worms showed abnormal behaviours including incremented erratic movement, mucus secretion, and decreased clumping tendency at acute level. Percentage of autotomy additionally increased significantly (P < 0.05) with the increasing dose of toxicant at 96 h exposure. Sublethal concentrations of SLES (10% and 30% of 96 h LC50 value) caused paramount alterations in the oxidative stress enzymes. Superoxide dismutase (SOD), reduced glutathione (GSH), glutathione S-transferase (GST), and glutathione peroxidase (GPx) exhibited a striking initiatory increment followed by a resulting descending pattern. Moreover, during exposure times, catalase (CAT) activity and malondialdehyde (MDA) level increased markedly with incrementing concentrations of SLES. However, the effects of sodium laureth sulfate on Tubifex tubifex were characterized and portrayed by the development of a correlation matrix and an integrated biomarker response (IBR) assessment. These results indicate that exposure to this anionic surfactant alters the survivability and behavioral response at acute level and modifies changes in oxidative stress enzymes at sublethal level in Tubifex tubifex.


Subject(s)
Oligochaeta , Oxidative Stress/drug effects , Sodium Dodecyl Sulfate/analogs & derivatives , Surface-Active Agents/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/metabolism , Lethal Dose 50 , Oligochaeta/drug effects , Oligochaeta/enzymology , Sodium Dodecyl Sulfate/toxicity
8.
Article in English | MEDLINE | ID: mdl-33220514

ABSTRACT

The present study was aimed to assess the acute toxicity of organophosphate pesticide, profenofos; synthetic pyrethroid pesticide, λ cyhalothrin and biopesticide, azadirachtin and their sublethal effects on growth rate and oxidative stress biomarkers in Tubifex tubifex in vivo. The results showed that 96 h LC50 value of profenofos, λ cyhalothrin and azadirachtin to Tubifex tubifex are 0.59, 0.13 and 82.15 mg L-1 respectively. Pesticide treated worms showed several behavioral abnormalities including increased mucus secretion, erratic movements, wrinkling activity and decreased clumping tendency during acute exposure. The percentage of autotomy increased significantly (p < 0.05) with the increasing concentration of the pesticides at 96 h of exposure. Sublethal concentrations of profenofos (0.059 and 0.118 mg L-1), λ cyhalothrin (0.013 and 0.026 mg L-1) and azadirachtin (8.2 and 16.4 mg L-1) caused significant alterations in growth rate and oxidative stress enzymes in T. tubifex during 14 days exposure period. The growth rate of the pesticide exposed worms decreased significantly (P < 0.05) in a concentration and duration-dependent manner. Superoxide dismutase (SOD), reduced glutathione (GSH), glutathione-s-transferase (GST) and glutathione peroxidase (GPx) demonstrated a noteworthy (p < 0.05) initial induction followed by a subsequent reduction, while catalase (CAT) and malondialdehyde (MDA) exhibited noteworthy induction (p < 0.05) all through the exposure time. Through principal component analysis, correlation matrix, and integrated biomarker response, the effects of profenofos, λ cyhalothrin and azadirachtin on T. tubifex were distinguished. These results indicate that exposure to profenofos, λ cyhalothrin and azadirachtin affect survivability, change the behavioral responses, reduce the growth rate and induce oxidative stress enzymes in T. tubifex.


Subject(s)
Limonins/toxicity , Nitriles/toxicity , Oligochaeta/drug effects , Oligochaeta/enzymology , Organothiophosphates/toxicity , Oxidative Stress/drug effects , Pyrethrins/toxicity , Animals , Behavior, Animal/drug effects , Biomarkers/metabolism , Insecticides/toxicity , Oligochaeta/growth & development
9.
Article in English | MEDLINE | ID: mdl-33022380

ABSTRACT

The present study was assessed to determine the in vivo toxic effects of a cationic surfactant, cetylpyridinium chloride (CPC), and an anionic surfactant, sodium dodecyl sulfate (SDS) in terms of oxidative stress biomarkers in benthic oligochaete worm Tubifex tubifex for 14 days. The investigation demonstrated that sublethal concentrations of CPC (0.0213, and 0.0639 mg L-1) and SDS (1.094 and 3.092 mg L-1)induced paramount alterations in the oxidative stress enzymes in Tubifex tubifex. Superoxide dismutase (SOD), glutathione S-transferase (GST), reduced glutathione (GSH), and glutathione peroxidase (GPx) exhibited an initial notable increase in their activities in the surfactants exposed worms at 1d and 7d of exposure period followed by consequential reduction at 14d exposure period with respect to control, while catalase (CAT) and malondialdehyde (MDA) activities markedly incremented gradually throughout the exposure periods. Through the construction of the correlation matrix and integrated biomarker response (IBR), the effects of CPC and SDS on Tubifex tubifex were distinguished. These results indicate that exposure to these cationic and anionic surfactants modulates the levels of oxidative stress enzymes in Tubifex tubifex.


Subject(s)
Cetylpyridinium/pharmacology , Oligochaeta/drug effects , Oxidative Stress/physiology , Sodium Dodecyl Sulfate/pharmacology , Surface-Active Agents/pharmacology , Animals , Anions/chemistry , Biomarkers/metabolism , Catalase/metabolism , Cations/chemistry , Glutathione/metabolism , Glutathione Transferase/metabolism , Metallothionein/metabolism , Oligochaeta/metabolism , Oligochaeta/physiology , Sodium Dodecyl Sulfate/chemistry , Superoxide Dismutase/metabolism , Surface-Active Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...