Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Mol Cancer Res ; 21(6): 548-563, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36787422

ABSTRACT

Despite effective new therapies, adaptive resistance remains the main obstacle in acute myelogenous leukemia (AML) therapy. Autophagy induction is a key mechanism for adaptive resistance. Leukemic blasts at diagnosis express higher levels of the apical autophagy kinase ULK1 compared with normal hematopoietic cells. Exposure to chemotherapy and targeted agents upregulate ULK1, hence we hypothesize that developing ULK1 inhibitors may present the unique opportunity for clinical translation of autophagy inhibition. Accordingly, we demonstrate that ULK1 inhibition, by genetic and pharmacologic means, suppresses treatment-induced autophagy, overcomes adaptive drug-resistance, and synergizes with chemotherapy and emerging antileukemia agents like venetoclax (ABT-199). The study next aims at exploring the underlying mechanisms. Mechanistically, ULK1 inhibition downregulates MCL1 antiapoptotic gene, impairs mitochondrial function and downregulates components of the CD44-xCT system, resulting in impaired reactive oxygen species (ROS) mitigation, DNA damage, and apoptosis. For further validation, several mouse models of AML were generated. In these mouse models, ULK1 deficiency impaired leukemic cell homing and engraftment, delayed disease progression, and improved survival. Therefore, in the study, we validated our hypothesis and identified ULK1 as an important mediator of adaptive resistance to therapy and an ideal candidate for combination therapy in AML. Therefore, we propose ULK1 inhibition as a therapeutically relevant treatment option to overcome adaptive drug-resistance in AML. IMPLICATIONS: ULK1 drives a cell-intrinsic adaptive resistance in AML and targeting ULK1-mediated autophagy can synergize with existing and emerging AML therapies to overcome drug-resistance and induce apoptosis.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Animals , Mice , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Antineoplastic Agents/pharmacology , Autophagy , Drug Resistance, Neoplasm , Apoptosis
2.
Haematologica ; 108(6): 1500-1514, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36226489

ABSTRACT

Strategies to overcome resistance to FMS-like tyrosine kinase 3 (FLT3)-targeted therapy in acute myeloid leukemia (AML) are urgently needed. We identified autophagy as one of the resistance mechanisms, induced by hypoxia and the bone marrow microenvironment via activation of Bruton tyrosine kinase (BTK). Suppressing autophagy/BTK sensitized FLT3- mutated AML to FLT3 inhibitor-induced apoptosis. Furthermore, co-targeting FLT3/BTK/aurora kinases with a novel multikinase inhibitor CG-806 (luxeptinib) induced profound apoptosis in FLT3-mutated AML by co-suppressing FLT3/BTK, antagonizing autophagy, and causing leukemia cell death in FLT3-wildtype AML by aurora kinase-mediated G2/M arrest and polyploidy, in addition to FLT3 inhibition. Thus, CG-806 exerted profound anti-leukemia activity against AML regardless of FLT3 mutation status. CG-806 also significantly reduced AML burden and extended survival in an in vivo patient-derived xenograft leukemia murine model of FLT3 inhibitor-resistant FLT3-ITD/TKD double-mutant primary AML. Taken together, these findings indicate that CG-806 has a unique mechanistic action and pre-clinical activity, which is presently undergoing clinical evaluation in both FLT3 wildtype and mutant AML.


Subject(s)
Leukemia, Myeloid, Acute , fms-Like Tyrosine Kinase 3 , Humans , Animals , Mice , Agammaglobulinaemia Tyrosine Kinase/genetics , fms-Like Tyrosine Kinase 3/genetics , Apoptosis , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Autophagy , Tumor Microenvironment
3.
Leukemia ; 36(5): 1261-1273, 2022 05.
Article in English | MEDLINE | ID: mdl-35173274

ABSTRACT

The NOTCH1-MYC-CD44 axis integrates cell-intrinsic and extrinsic signaling to ensure the persistence of leukemia-initiating cells (LICs) in T-cell acute lymphoblastic leukemia (T-ALL) but a common pathway to target this circuit is poorly defined. Bromodomain-containing protein 4 (BRD4) is implicated to have a role in the transcriptional regulation of oncogenes MYC and targets downstream of NOTCH1, and here we demonstrate its role in transcriptional regulation of CD44. Hence, targeting BRD4 will dismantle the NOTCH1-MYC-CD44 axis. As a proof of concept, degrading BRD4 with proteolysis targeting chimera (PROTAC) ARV-825, prolonged the survival of mice in Notch1 mutated patient-derived xenograft (PDX) and genetic models (ΔPTEN) of T-ALL. Single-cell proteomics analysis from the PDX model, demonstrated quantitative reduction of LICs (CD34+ CD7+ CD19-) and downregulation of the NOTCH1-MYC-CD44 axis, along with cell cycle, apoptosis and PI3K/Akt pathways. Moreover, secondary transplantation from PDX and ΔPTEN models of T-ALL, confirmed delayed leukemia development and extended survival of mice engrafted with T-ALL from ARV-825 treated mice, providing functional confirmation of depletion of LICs. Hence, BRD4 degradation is a promising LIC-targeting therapy for T-ALL.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Humans , Hyaluronan Receptors/genetics , Mice , Nuclear Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism
4.
J Clin Invest ; 129(5): 1878-1894, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30829648

ABSTRACT

Anti-leukemic effect of BET/BRD4 (BETP) protein inhibition has been largely attributed to transcriptional downregulation of cellular anabolic/anti-apoptotic processes but its effect on bone marrow microenvironment, a sanctuary favoring persistence of leukemia stem/progenitor cells, is unexplored. Sustained degradation of BETP with small-molecule BET proteolysis-targeting chimera (PROTAC), ARV-825, resulted in marked downregulation of surface CXCR4 and CD44, key proteins in leukemia-microenvironment interaction, in AML cells. Abrogation of surface CXCR4 expression impaired SDF-1α directed migration and was mediated through transcriptional down-regulation of PIM1 kinase that in turn phosphorylates CXCR4 and facilitates its surface localization. Down-regulation of CD44/CD44v8-10 impaired cystine uptake, lowered intracellular reduced glutathione and increased oxidative stress. More importantly, BETP degradation markedly decreased CD34+CD38-CD90-CD45RA+ leukemic stem cell population and alone or in combination with Cytarabine, prolonged survival in mouse model of human leukemia including AML-PDX. Gene expression profiling and single cell proteomics confirmed down regulation of the gene signatures associated with 'stemness' in AML and Wnt/ß-catenin, Myc pathways. Hence, BETP degradation by ARV-825 simultaneously targets cell intrinsic signaling, stromal interactions and metabolism in AML.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/metabolism , Nuclear Proteins/metabolism , Transcription Factors/antagonists & inhibitors , ADP-ribosyl Cyclase 1/metabolism , Animals , Antigens, CD34/metabolism , Azepines/pharmacology , Bone Marrow/metabolism , Cell Line, Tumor , Cell Movement , Chemokine CXCL12/metabolism , Cysteine/chemistry , Gene Expression Profiling , Glutathione/chemistry , HL-60 Cells , Humans , Hyaluronan Receptors/metabolism , Leukocyte Common Antigens/metabolism , Male , Membrane Glycoproteins/metabolism , Mice , Neoplasm Transplantation , Oxidative Stress , Phosphorylation , Receptors, CXCR4/metabolism , THP-1 Cells , Thalidomide/analogs & derivatives , Thalidomide/pharmacology , Thy-1 Antigens/metabolism , U937 Cells
5.
Clin Adv Hematol Oncol ; 16(7): 504-515, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30067623

ABSTRACT

Cancer cells are addicted to mutations that cause gain of function in oncogenes and loss of function in tumor suppressors, so that these cells are reliant on aberrant signaling pathways and transcription. Protein-protein and DNA-protein interactions that cause chromatin remodeling are another source of the deregulation of critical signaling and transcriptional regulators, altering epigenetic signatures and creating additional vulnerabilities. Owing to mutations in multiple epigenetic regulators in hematologic malignancies, cancer cells are highly addicted to altered transcription. These vulnerabilities have been targeted by several epigenetic drugs, including hypomethylating agents, but the idea of targeting bromodomain proteins has emerged relatively recently. Because bromodomain proteins recognize acetylated lysine on histones and recruit transcription complexes on the chromatin, targeting these proteins may serve as a strategy to target transcription, irrespective of the presence of epigenetic mutations. Here, we review the existing literature to explain the rationale of using bromodomain inhibitors in hematologic malignancies. We discuss the evolution of bromodomain inhibitors, with an in-depth evaluation of bromodomain and extraterminal domain (BET) proteins, the most prominent bromodomain family, and also highlight the prospect of targeting non-BET proteins. In the later sections, we comment on the combinatorial targeting of BET proteins to overcome the effects of multiple signaling pathways. Finally, we emphasize the newer concepts, such as dual-kinase inhibition and selective bromodomain targeting, and technologies, such as protein degradation, that are expected to influence the future generation of bromodomain inhibitors.


Subject(s)
Antineoplastic Agents/therapeutic use , Hematologic Neoplasms/drug therapy , Molecular Targeted Therapy , Transcription Factors/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Biomarkers, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Hematologic Neoplasms/genetics , Hematologic Neoplasms/metabolism , Humans , Oncogenes
6.
Article in English | MEDLINE | ID: mdl-29967688

ABSTRACT

Herpesvirus-associated ubiquitin-specific protease (HAUSP) is a USP family deubiquitinase. HAUSP is a protein of immense biological importance as it is involved in several cellular processes, including host-virus interactions, oncogenesis and tumor suppression, DNA damage and repair processes, DNA dynamics and epigenetic modulations, regulation of gene expression and protein function, spatio-temporal distribution, and immune functions. Since its discovery in the late 1990s as a protein interacting with a herpes virus regulatory protein, extensive studies have assessed its complex roles in p53-MDM2-related networks, identified numerous additional interacting partners, and elucidated the different roles of HAUSP in the context of cancer, development, and metabolic and neurological pathologies. Recent analyses have provided new insights into its biochemical and functional dynamics. In this review, we provide a comprehensive account of our current knowledge about emerging insights into HAUSP in physiology and diseases, which shed light on fundamental biological questions and promise to provide a potential target for therapeutic intervention.

7.
Cell Oncol (Dordr) ; 38(4): 265-77, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25925205

ABSTRACT

PURPOSE: The de-ubiquitinase HAUSP has been reported to exhibit various biological roles implicated in the development of cancer and other pathologies. The dual nature of HAUSP (i.e., oncogenic and tumor suppressive) makes the protein even more versatile. The major aims of this study were to reveal the effect of HAUSP over-expression on the overall proteome and to identify bona fide substrates of HAUSP. In addition, we aimed to unravel the functionality and physiological relevance of the de-ubiquitinating activity of HAUSP on one of its newly identified substrates, TRRAP. METHODS: An overall proteome analysis was performed after exogenous HAUSP over-expression in HEK293 cells, followed by 2-dimensional gel electrophoresis (2-DE). Interacting proteins were subsequently isolated using immunoprecipitation and 1-dimensional gel electrophoresis (1-DE). Both were followed by tandem MALDI-TOF/TOF mass spectrometry and gene ontology-based analyses. To validate the functionality of one of the identified substrates (TRRAP), Western blotting, immunocytochemistry, immunoprecipitation, in vivo de-ubiquitination, quantitative real-time PCR and luciferase assays were performed. RESULTS: The substrate screening indicated that HAUSP may be involved in tumorigenesis, cytoskeletal organization and transport, and chaperone systems. One candidate substrate, TRRAP, was found to physically interact and co-localize with HAUSP. As TRRAP regulates c-MYC expression, and in order to validate the effect of HAUSP on TRRAP, c-MYC protein and mRNA expression levels were analyzed after exogenous HAUSP over-expression. Both were found to be up-regulated. We also found that c-MYC transactivation increased upon exogenous HAUSP over-expression. By using a luciferase reporter assay, we found that a c-MYC responsive promoter exhibited increased activity, which was subsequently abrogated upon TRRAP knockdown. CONCLUSIONS: From our results we conclude that HAUSP may act as an oncogenic protein that can modulate c-MYC expression via TRRAP. Our results provide a new context in which HAUSP may play a role in cancer cell signalling.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitination , Adaptor Proteins, Signal Transducing/genetics , Electrophoresis, Gel, Two-Dimensional , HEK293 Cells , Humans , Nuclear Proteins/genetics , Proteome/genetics , Proteome/metabolism , Proteomics/methods , Proto-Oncogene Proteins c-myc/genetics , RNA Interference , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry , Ubiquitin Thiolesterase/genetics , Ubiquitin-Specific Peptidase 7
8.
Biomed Res Int ; 2014: 435197, 2014.
Article in English | MEDLINE | ID: mdl-25121098

ABSTRACT

The process of cell death has important physiological implications. At the organism level it is mostly involved in maintenance of tissue homeostasis. At the cellular level, the strategies of cell death may be categorized as either suicide or sabotage. The mere fact that many of these processes are programmed and that these are often deregulated in pathological conditions is seed to thought. The various players that are involved in these pathways are highly regulated. One of the modes of regulation is via post-translational modifications such as ubiquitination and deubiquitination. In this review, we have first dealt with the different modes and pathways involved in cell death and then we have focused on the regulation of several proteins in these signaling cascades by the different deubiquitinating enzymes, in the perspective of cancer. The study of deubiquitinases is currently in a rather nascent stage with limited knowledge both in vitro and in vivo, but the emerging roles of the deubiquitinases in various processes and their specificity have implicated them as potential targets from the therapeutic point of view. This review throws light on another aspect of cancer therapeutics by targeting the deubiquitinating enzymes.


Subject(s)
Neoplasms/enzymology , Neoplasms/pathology , Ubiquitin-Specific Proteases/metabolism , Cell Death/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Signal Transduction/drug effects
9.
FEBS J ; 281(13): 3061-78, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24823443

ABSTRACT

Tumor suppressor retinoblastoma-associated protein (Rb) is an important cell cycle regulator, arresting cells in early G1. It is commonly inactivated in cancers and its level is maintained during the cell cycle. Rb is regulated by various post-translational modifications such as phosphorylation, acetylation, ubiquitination and so on. Several E3 ligases including murine double minute 2 (MDM2) promote the degradation of Rb. This study focuses on the role of HAUSP (herpes virus associated ubiquitin specific protease) on Rb. Here, we show that HAUSP colocalizes and interacts with Rb to stabilize it from proteasomal degradation by removing wild-type and K48-linked ubiquitin chains in human embryonic kidney 293 (HEK293) cells. HAUSP deubiquitinates Rb in vivo and in vitro, leading to an increased cell population in the G1 phase. Hence, HAUSP is a novel deubiquitinase for Rb. Immunohistochemistry, western blotting and cell-based assays show that HAUSP is overexpressed in glioma and contributes towards glioma progression. However, HAUSP activity on Rb is abrogated in glioma (cancer), where these two proteins show an inverse relationship. MDM2 (a known substrate of HAUSP) serves as a better target for HAUSP-mediated deubiquitination in cancer cells, facilitating degradation of Rb and oncogenic progression. This novel regulatory axis is proteasome mediated, p53 independent, and the level of MDM2 is critical. The shift in equilibrium by differential deubiquitination in regulation of Rb explains a subtle difference existing between normal and cancer cells. This leads to speculation about a new possibility for distinguishing cancer cells from normal cells at the molecular level, which may be investigated for therapeutic intervention in the future.


Subject(s)
Proto-Oncogene Proteins c-mdm2/metabolism , Retinoblastoma Protein/metabolism , Ubiquitin Thiolesterase/physiology , Amino Acid Sequence , Animals , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , Glioma/enzymology , HEK293 Cells , Humans , Molecular Sequence Data , Protein Transport , Proteolysis , Ubiquitin-Specific Peptidase 7 , Ubiquitination
10.
Biopolymers ; 102(4): 344-58, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24839139

ABSTRACT

Protein-protein interactions are part of a large number of signaling networks and potential targets for drug development. However, discovering molecules that can specifically inhibit such interactions is a major challenge. S100B, a calcium-regulated protein, plays a crucial role in the proliferation of melanoma cells through protein-protein interactions. In this article, we report the design and development of a bidentate conformationally constrained peptide against dimeric S100B based on a natural tight-binding peptide, TRTK-12. The helical conformation of the peptide was constrained by the substitution of α-amino isobutyric acid--an amino acid having high helical propensity--in positions which do not interact with S100B. A branched bidentate version of the peptide was bound to S100B tightly with a dissociation constant of 8 nM. When conjugated to a cell-penetrating peptide, it caused growth inhibition and rapid apoptosis in melanoma cells. The molecule exerts antiproliferative action through simultaneous inhibition of key growth pathways, including reactivation of wild-type p53 and inhibition of Akt and STAT3 phosphorylation. The apoptosis induced by the bidentate constrained helix is caused by direct migration of p53 to mitochondria. At moderate intravenous dose, the peptide completely inhibits melanoma growth in a mouse model without any significant observable toxicity. The specificity was shown by lack of ability of a double mutant peptide to cause tumor regression at the same dose level. The methodology described here for direct protein-protein interaction inhibition may be effective for rapid development of inhibitors against relatively weak protein-protein interactions for de novo drug development.


Subject(s)
CapZ Actin Capping Protein/chemistry , CapZ Actin Capping Protein/pharmacology , Melanoma/pathology , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Amino Acid Sequence , Animals , Blotting, Western , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival , Disease Models, Animal , Humans , Mice , Microscopy, Phase-Contrast , Molecular Sequence Data , Protein Binding , Protein Structure, Secondary , Remission Induction , Signal Transduction/drug effects , Temperature , Tumor Suppressor Protein p53/metabolism
11.
PLoS One ; 8(3): e59798, 2013.
Article in English | MEDLINE | ID: mdl-23555785

ABSTRACT

Despite recent advances in medicine, 30-40% of patients with breast cancer show recurrence underscoring the need for improved effective therapy. In this study, by in vitro screening we have selected a novel synthetic indole derivative 2,2'-diphenyl-3,3'-diindolylmethane (DPDIM) as a potential anti- breast cancer agent. DPDIM induces apoptosis both in vitro in breast cancer cells MCF7, MDA-MB 231 and MDA-MB 468 and in vivo in 7,12-dimethylbenz[α]anthracene (DMBA) induced Sprague-Dawley (SD) rat mammary tumor. Our in vitro studies show that DPDIM exerts apoptotic effect by negatively regulating the activity of EGFR and its downstream molecules like STAT3, AKT and ERK1/2 which are involved in the proliferation and survival of these cancer cells. In silico predictions also suggest that DPDIM may bind to EGFR at its ATP binding site. DPDIM furthermore inhibits EGF induced increased cell viability. We have also shown decreased expression of pro-survival factor Bcl-XL as well as increase in the level of pro-apoptotic proteins like Bax, Bad, Bim in DPDIM treated cells in vitro and in vivo. Our results further indicate that the DPDIM induced apoptosis is mediated through mitochondrial apoptotic pathway involving the caspase-cascade. To the best of our knowledge this is the first report of DPDIM for its anticancer activity. Altogether this report suggests that DPDIM could be an effective therapeutic agent for breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis , Breast Neoplasms/pathology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Indoles/pharmacology , Mammary Neoplasms, Experimental/drug therapy , Animals , Binding Sites , Cell Line, Tumor , Cell Proliferation , Cell Survival , ErbB Receptors/chemistry , Female , Humans , MCF-7 Cells , Phosphorylation , Rats , Rats, Sprague-Dawley
12.
Genes Cancer ; 4(11-12): 427-46, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24386505

ABSTRACT

Glioblastoma multiformes (GBMs) are extensively heterogeneous at both cellular and molecular levels. Current therapeutic strategies include targeting of key signaling molecules using pharmacological inhibitors in combination with genotoxic agents such as temozolomide. In spite of all efforts, the prognosis of glioma patients remains dismal. Therefore, a proper understanding of individual molecular pathways responsible for the progression of GBM is necessary. The epidermal growth factor receptor (EGFR) pathway is probably the most significant signaling pathway clinically implicated in glioma. Not surprisingly, anti-EGFR therapies mostly prevail for therapeutic purposes. The Wnt/ß-catenin pathway is well implicated in multiple tumors; however, its role in glioma has only recently started to emerge. We give a concise account of the current understanding of the role of both these pathways in glioma. Last, taking evidences from a limited literature, we outline a number of points where these pathways intersect each other and put forward the possibility of combinatorially targeting them for treatment of glioma.

13.
J Biol Chem ; 287(22): 18287-96, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22493441

ABSTRACT

Wnt/ß-catenin and EGFR pathways are important in cancer development and often aberrantly activated in human cancer. However, it is very important to understand the mechanism responsible for this activation and the relation between them. Here, we report the mechanism of EGFR expression by transcriptionally active ß-catenin in GSK3ß-inactivated prostate cancer cells that eventually leads to its enhanced proliferation and survival. Expressions of ß-catenin and EGFR are elevated in various cancers specifically in prostate cancer cells, DU145. When GSK3ß is inactivated in these cells, ß-catenin gets stabilized, phosphorylated at Ser-552 by protein kinase A, accumulates in the nucleus, and regulates the expression of its target genes that include EGFR. Chromatin immunoprecipitation (ChIP) and promoter analysis revealed that the EGFR promoter gets occupied by transcriptionally active ß-catenin when elevated in GSK3ß-inactivated cells. This phenomenon not only leads to increased expression of EGFR but also initiates the activation of its downstream molecules such as ERK1/2 and Stat3, ultimately resulting in up-regulation of multiple genes involved in cell proliferation and survival.


Subject(s)
ErbB Receptors/genetics , Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Neoplastic/physiology , Glycogen Synthase Kinase 3/antagonists & inhibitors , Prostatic Neoplasms/metabolism , Transcription, Genetic/physiology , beta Catenin/physiology , Cell Line, Tumor , Chromatin Immunoprecipitation , ErbB Receptors/metabolism , Humans , Male , Microscopy, Fluorescence , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Receptor Cross-Talk , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...