Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
Transl Res ; 261: 41-56, 2023 11.
Article in English | MEDLINE | ID: mdl-37419277

ABSTRACT

Lack of retinoblastoma (Rb) protein causes aggressive intraocular retinal tumors in children. Recently, Rb tumors have been shown to have a distinctly altered metabolic phenotype, such as reduced expression of glycolytic pathway proteins alongside altered pyruvate and fatty acid levels. In this study, we demonstrate that loss of hexokinase 1(HK1) in tumor cells rewires their metabolism allowing enhanced oxidative phosphorylation-dependent energy production. We show that rescuing HK1 or retinoblastoma protein 1 (RB1) in these Rb cells reduced cancer hallmarks such as proliferation, invasion, and spheroid formation and increased their sensitivity to chemotherapy drugs. Induction of HK1 was accompanied by a metabolic shift of the cells to glycolysis and a reduction in mitochondrial mass. Cytoplasmic HK1 bound Liver Kinase B1 and phosphorylated AMP-activated kinase-α (AMPKα Thr172), thereby reducing mitochondria-dependent energy production. We validated these findings in tumor samples from Rb patients compared to age-matched healthy retinae. HK1 or RB1 expression in Rb-/- cells led to a reduction in their respiratory capacity and glycolytic proton flux. HK1 overexpression reduced tumor burden in an intraocular tumor xenograft model. AMPKα activation by AICAR also enhanced the tumoricidal effects of the chemotherapeutic drug topotecan in vivo. Therefore, enhancing HK1 or AMPKα activity can reprogram cancer metabolism and sensitize Rb tumors to lower doses of existing treatments, a potential therapeutic modality for Rb.


Subject(s)
Retinal Neoplasms , Retinoblastoma , Child , Animals , Humans , Retinoblastoma/genetics , Retinoblastoma/metabolism , Retinoblastoma/pathology , AMP-Activated Protein Kinases , Phenotype , Disease Models, Animal , Retinal Neoplasms/genetics , Retinal Neoplasms/pathology
2.
Indian J Ophthalmol ; 71(5): 2143-2151, 2023 05.
Article in English | MEDLINE | ID: mdl-37203095

ABSTRACT

Purpose: Pediatric cataract is a major cause of preventable childhood blindness worldwide. Although genetic mutations or infections have been described in patients, the mechanistic basis of human cataract development remains poorly understood. Therefore, gene expression of structural, developmental, profibrotic, and transcription factors in phenotypically and etiologically distinct forms of pediatric cataracts were evaluated. Methods: This cross-sectional study included 89 pediatric cataract subjects subtyped into 1) prenatal infectious (cytomegalovirus, rubella, and combined cytomegalovirus with rubella infection), 2) prenatal non-infectious, 3) posterior capsular anomalies, 4) postnatal, 5) traumatic, and 6) secondary, and compared to clear, non-cataractous material of eyes with the subluxated lenses. Expression of lens structure-related genes (Aqp-0, HspA4/Hsp70, CrygC), transcription factors (Tdrd7, FoxE3, Maf, Pitx 3) and profibrotic genes (Tgfß, Bmp7, αSmA, vimentin) in surgically extracted cataract lens material were studied and correlated clinically. Results: In cataract material, the lens-related gene expression profiles were uniquely associated with phenotype/etiology of different cataracts. Postnatal cataracts showed a significantly altered FoxE3 expression. Low levels of Tdrd7 expression correlated with posterior subcapsular opacity, whereas CrygC correlated significantly with anterior capsular ruptures. The expression of Aqp0 and Maf was elevated in infectious cataracts, particularly in CMV infections, compared to other cataract subtypes. Tgfß showed significantly low expression in various cataract subtypes, whereas vimentin had elevated gene expression in infectious and prenatal cataracts. Conclusion: A significant association between lens gene expression patterns in phenotypically and etiologically distinct subtypes of pediatric cataracts suggests regulatory mechanisms in cataractogenesis. The data reveal that cataract formation and presentation is a consequence of altered expression of a complex network of genes.


Subject(s)
Cataract , Lens, Crystalline , Humans , Child , Vimentin/genetics , Vimentin/metabolism , Cross-Sectional Studies , Transcriptome , Cataract/genetics , Cataract/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transforming Growth Factor beta/genetics , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism
3.
Clin Genet ; 99(2): 298-302, 2021 02.
Article in English | MEDLINE | ID: mdl-33124039

ABSTRACT

Rod-cone dystrophy (RCD), also called retinitis pigmentosa, is characterized by rod followed by cone photoreceptor degeneration, leading to gradual visual loss. Mutations in over 65 genes have been associated with non-syndromic RCD explaining 60% to 70% of cases, with novel gene defects possibly accounting for the unsolved cases. Homozygosity mapping and whole-exome sequencing applied to a case of autosomal recessive non-syndromic RCD from a consanguineous union identified a homozygous variant in WDR34. Mutations in WDR34 have been previously associated with severe ciliopathy syndromes possibly associated with a retinal dystrophy. This is the first report of a homozygous mutation in WDR34 associated with non-syndromic RCD.


Subject(s)
Carrier Proteins/genetics , Cone-Rod Dystrophies/genetics , Adult , Genetic Association Studies , Humans , Male , Pedigree , WD40 Repeats
4.
PLoS Genet ; 16(4): e1008721, 2020 04.
Article in English | MEDLINE | ID: mdl-32339198

ABSTRACT

Current estimates suggest 50% of glaucoma blindness worldwide is caused by primary angle-closure glaucoma (PACG) but the causative gene is not known. We used genetic linkage and whole genome sequencing to identify Spermatogenesis Associated Protein 13, SPATA13 (NM_001166271; NP_001159743, SPATA13 isoform I), also known as ASEF2 (Adenomatous polyposis coli-stimulated guanine nucleotide exchange factor 2), as the causal gene for PACG in a large seven-generation white British family showing variable expression and incomplete penetrance. The 9 bp deletion, c.1432_1440del; p.478_480del was present in all affected individuals with angle-closure disease. We show ubiquitous expression of this transcript in cell lines derived from human tissues and in iris, retina, retinal pigment and ciliary epithelia, cornea and lens. We also identified eight additional mutations in SPATA13 in a cohort of 189 unrelated PACS/PAC/PACG samples. This gene encodes a 1277 residue protein which localises to the nucleus with partial co-localisation with nuclear speckles. In cells undergoing mitosis SPATA13 isoform I becomes part of the kinetochore complex co-localising with two kinetochore markers, polo like kinase 1 (PLK-1) and centrosome-associated protein E (CENP-E). The 9 bp deletion reported in this study increases the RAC1-dependent guanine nucleotide exchange factors (GEF) activity. The increase in GEF activity was also observed in three other variants identified in this study. Taken together, our data suggest that SPATA13 is involved in the regulation of mitosis and the mutations dysregulate GEF activity affecting homeostasis in tissues where it is highly expressed, influencing PACG pathogenesis.


Subject(s)
Glaucoma, Open-Angle/genetics , Guanine Nucleotide Exchange Factors/genetics , Mutation , Adolescent , Adult , Aged , Cell Division , Cell Nucleus/metabolism , Eye/metabolism , Female , Glaucoma, Open-Angle/pathology , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/metabolism , Humans , Kinetochores/metabolism , Male , Middle Aged , Pedigree , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Transport
5.
Front Physiol ; 10: 688, 2019.
Article in English | MEDLINE | ID: mdl-31231240

ABSTRACT

Cataract, the loss of ocular lens transparency, accounts for ∼50% of worldwide blindness and has been associated with water and solute transport dysfunction across lens cellular barriers. We show that neutral amino acid antiporter LAT2 (Slc7a8) and uniporter TAT1 (Slc16a10) are expressed on mouse ciliary epithelium and LAT2 also in lens epithelium. Correspondingly, deletion of LAT2 induced a dramatic decrease in lens essential amino acid levels that was modulated by TAT1 defect. Interestingly, the absence of LAT2 led to increased incidence of cataract in mice, in particular in older females, and a synergistic effect was observed with simultaneous lack of TAT1. Screening SLC7A8 in patients diagnosed with congenital or age-related cataract yielded one homozygous single nucleotide deletion segregating in a family with congenital cataract. Expressed in HeLa cells, this LAT2 mutation did not support amino acid uptake. Heterozygous LAT2 variants were also found in patients with cataract some of which showed a reduced transport function when expressed in HeLa cells. Whether heterozygous LAT2 variants may contribute to the pathology of cataract needs to be further investigated. Overall, our results suggest that defects of amino acid transporter LAT2 are implicated in cataract formation, a situation that may be aggravated by TAT1 defects.

6.
Ophthalmic Genet ; 39(4): 539-543, 2018 08.
Article in English | MEDLINE | ID: mdl-29947570

ABSTRACT

OBJECTIVE: This study was undertaken with the objective to investigate the potential involvement of VAX2 in retinal degeneration. METHODS: A cohort of macular and cone dystrophy patients (n = 70) was screened for variant identification. Polymerase chain reaction (PCR) products were purified using ExoSAP-IT. Direct sequencing of PCR products was performed using BigDye 3.1 on the ABI 3730 DNA Analyzer and analyzed using DNASTAR software tool. Search for known variant was performed using the following platforms: 1000 Genomes Project, Ensembl, UCSC, ExAc, and dbSNP. The VAX2 mutants were generated using the GeneArt® Site-Directed Mutagenesis kit. In vitro analysis was performed in hTERTRPE-1 (RPE-1) cell line. Cells were photographed using a Zeiss AXIOVERT S100 microscope. Images were analyzed using Photoshop CS4 software. RESULTS: Here, we report the identification of a heterozygous non-synonymous variant (c.416T>G; p.Leu139Arg) in one cone dystrophy proband. Functional characterization of this variant in vitro revealed an aberrant phenotype seen as protein mislocalization to cytoplasm/nucleus and aggregates undergoing degradation or forming aggresomes. The cellular phenotype suggests protein loss-of-function. Analysis of the VAX2 p.Leu139Met, a variant present in the normal population, showed a phenotype similar to the wild-type, further supporting the hypothesis for the Leucine 139 to Arginine change to be damaging. CONCLUSIONS: This study raises the interesting possibility for evaluating VAX2 as a candidate gene for cone dystrophy.


Subject(s)
Cone Dystrophy/genetics , Homeodomain Proteins/genetics , Mutation , Cone Dystrophy/diagnosis , Cone Dystrophy/physiopathology , DNA Mutational Analysis , Electroretinography , Heterozygote , Humans , Male , Middle Aged , Mutagenesis, Site-Directed , Pedigree , Phenotype , Plasmids , Polymerase Chain Reaction , Visual Acuity
7.
J Clin Pathol ; 70(9): 729-732, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28663330

ABSTRACT

Pre-mRNA splicing is an essential process in eukaryotic cells where the transcribed intronic sequences are removed, prior to translation into protein. PRPF31 is a ubiquitously expressed splicing factor, which aids in the assembly of the macromolecular spliceosome. Mutations in PRPF31 cause autosomal dominant retinitis pigmentosa (adRP), a form of retinal degeneration that causes progressive visual impairment. Interestingly, mutations in PRPF31 are non-penetrant, with some mutation carriers being phenotypically unaffected. In this review, the gene organisation, protein structure and biological function of PRPF31 are discussed, and the mechanisms of non-penetrance in PRPF31-associated adRP are discussed.


Subject(s)
Eye Proteins/genetics , Mutation , Retina/metabolism , Retinitis Pigmentosa/genetics , Vision, Ocular/genetics , Eye Proteins/metabolism , Genetic Markers , Genetic Predisposition to Disease , Heredity , Humans , Penetrance , Phenotype , Retina/physiopathology , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/physiopathology
8.
Stem Cells Transl Med ; 6(4): 1217-1226, 2017 04.
Article in English | MEDLINE | ID: mdl-28213969

ABSTRACT

Neural differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) can produce a valuable and robust source of human neural cell subtypes, holding great promise for the study of neurogenesis and development, and for treating neurological diseases. However, current hESCs and hiPSCs neural differentiation protocols require either animal factors or embryoid body formation, which decreases efficiency and yield, and strongly limits medical applications. Here we develop a simple, animal-free protocol for neural conversion of both hESCs and hiPSCs in adherent culture conditions. A simple medium formula including insulin induces the direct conversion of >98% of hESCs and hiPSCs into expandable, transplantable, and functional neural progenitors with neural rosette characteristics. Further differentiation of neural progenitors into dopaminergic and spinal motoneurons as well as astrocytes and oligodendrocytes indicates that these neural progenitors retain responsiveness to instructive cues revealing the robust applicability of the protocol in the treatment of different neurodegenerative diseases. The fact that this protocol includes animal-free medium and human extracellular matrix components avoiding embryoid bodies makes this protocol suitable for the use in clinic. Stem Cells Translational Medicine 2017;6:1217-1226.


Subject(s)
Pluripotent Stem Cells/cytology , Cell Differentiation/physiology , Cell- and Tissue-Based Therapy , Cells, Cultured , Embryonic Stem Cells/physiology , Humans , Induced Pluripotent Stem Cells/cytology
9.
Colloids Surf B Biointerfaces ; 149: 226-232, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27768912

ABSTRACT

Human bestrophin-1 (hBest1) is a transmembrane calcium-activated chloride channel protein - member of the bestrophin family of anion channels, predominantly expressed in the membrane of retinal pigment epithelium (RPE) cells. Mutations in the protein cause ocular diseases, named Bestrophinopathies. Here, we present the first Fourier transform infrared (FTIR) study of the secondary structure elements of hBest1, π/A isotherms and hysteresis, Brewster angle microscopy (BAM) and atomic force microscopy (AFM) visualization of the aggregation state of protein molecules dispersed as Langmuir and Langmuir-Blodgett films. The secondary structure of hBest1 consists predominantly of 310-helices (27.2%), α-helixes (16.3%), ß-turns and loops (32.2%). AFM images of hBest1 suggest approximate lateral dimensions of 100×160Å and 75Å height. Binding of calcium ions (Ca2+) induces conformational changes in the protein secondary structure leading to assembly of protein molecules and changes in molecular and macro-organization of hBest1 in monolayers. These data provide basic information needed in pursuit of molecular mechanisms underlying retinal and other pathologies linked to this protein.


Subject(s)
Calcium/chemistry , Chloride Channels/chemistry , Eye Proteins/chemistry , Membranes, Artificial , Animals , Bestrophins , Cations, Divalent , Chloride Channels/genetics , Dogs , Eye Proteins/genetics , Gene Expression , Humans , Madin Darby Canine Kidney Cells , Mutation , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Surface Properties , Thermodynamics
10.
PLoS One ; 11(11): e0166397, 2016.
Article in English | MEDLINE | ID: mdl-27846257

ABSTRACT

PURPOSE: Mutations in the EYS gene are a common cause of autosomal recessive retinitis pigmentosa (arRP), yet the role of the EYS protein in humans is presently unclear. The aim of this study was to investigate the isoform structure, expression and potential function of EYS in the mammalian retina in order to better understand its involvement in the pathogenesis of arRP. METHODS: To achieve the objective, we examined the expression of mRNA transcripts of EYS isoforms in human tissues and cell lines by RT-PCR. We also investigated the localisation of EYS in cultured cells and retinal cryo-sections by confocal fluorescence microscopy and Western blot analysis. RESULTS: RT-PCR analysis confirmed that EYS has at least four isoforms. In addition to the previously reported EYS isoforms 1 and 4, we present the experimental validation of two smaller variants referred to as EYS isoforms 2 and 3. All four isoforms are expressed in the human retina and Y79 cells and the short variants were additionally detected in the testis. Immunofluorescent confocal microscopy and Western blot analysis revealed that all EYS isoforms preferentially localise to the cytoplasm of Y79 and HeLa cells. Moreover, an enrichment of the endogenous protein was observed near the centrosomes in Y79 cells. Interestingly, EYS was observed at the ciliary axoneme in Y79 ciliated cells. In macaque retinal cryosections, EYS was found to localise in the region of the photoreceptor ciliary axoneme in both rods and cones as well as in the cytoplasm of the ganglion cells. CONCLUSION: The results obtained in this study lead us to speculate that, in photoreceptor cells, EYS could be a protein involved in maintaining the stability of the ciliary axoneme in both rods and cones. The variability of its isoform structure suggests that other roles are also possible and yet to be established.


Subject(s)
Eye Proteins/genetics , Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Retinitis Pigmentosa/genetics , Animals , Axoneme/genetics , Axoneme/metabolism , Axoneme/pathology , Cilia/genetics , Cilia/metabolism , Cilia/pathology , Cytoplasm/genetics , Cytoplasm/metabolism , DNA Mutational Analysis , Electroretinography , Eye Proteins/metabolism , HeLa Cells , Humans , Indoles , Macaca/genetics , Macaca/metabolism , Mutation , Protein Isoforms/genetics , Protein Isoforms/metabolism , Retina/metabolism , Retina/pathology , Retinal Cone Photoreceptor Cells/pathology , Retinal Rod Photoreceptor Cells/pathology , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology
11.
Nanomedicine ; 12(8): 2251-2260, 2016 11.
Article in English | MEDLINE | ID: mdl-27381066

ABSTRACT

Retinitis pigmentosa (RP) is the most common cause of inherited blindness in adults. Mutations in the PRPF31 gene produce autosomal dominant RP (adRP). To date there are no effective treatments for this disease. The purpose of this study was to design an efficient non-viral vector for human PRPF31 gene delivery as an approach to treat this form of adRP. Span based nanoparticles were developed to mediate gene transfer in the subretinal space of a mouse model of adRP carrying a point mutation (A216P) in the Prpf31 gene. Funduscopic examination, electroretinogram, optomotor test and optical coherence tomography were conducted to further in vivo evaluate the safety and efficacy of the nanosystems developed. Span-polyarginine (SP-PA) nanoparticles were able to efficiently transfect the GFP and PRPF31 plasmid in mice retinas. Statistically significant improvement in visual acuity and retinal thickness were found in Prpf31A216P/+ mice treated with the SP-PA-PRPF31 nanomedicine.


Subject(s)
Eye Proteins/administration & dosage , Genetic Therapy/methods , Nanoparticles , Retinitis Pigmentosa/therapy , Animals , Arginine , DNA Mutational Analysis , Genes, Dominant , Humans , Mice , Mutation , Pedigree
12.
Exp Eye Res ; 148: 24-29, 2016 07.
Article in English | MEDLINE | ID: mdl-27179412

ABSTRACT

VAX2 is a transcription factor specifically expressed in the ventral region of the prospective neural retina in vertebrates and is required for ventral eye specification. Despite its extensive analysis in vertebrates, the biological role of VAX2 in the human is presently unclear. This study was undertaken to investigate VAX2 in humans aiming to gain new knowledge into its involvement in retinal function. Here, we report VAX2 gene expression and protein localization in cultured cells and adult retina. RT-PCR experiments indicated that VAX2 is enriched in neuronal tissues. Moreover, we identified a novel isoform most abundantly expressed in the retina. We termed the known transcript (NM_012476) isoform-1, and the newly identified transcript as isoform-2. Analysis of protein localization in cultured cells revealed that isoform-1 localizes to the nucleus and isoform-2 is widely expressed within the cell; partial co-localization of isoform-2 and actin filaments was also observed. In nonhuman primate retina VAX2 was seen either in the nuclear or in the cytoplasmic compartment depending on the retinal cell type. In addition, a noteworthy enrichment of the signal was observed in the outer segment of cone photoreceptors. Overall, this study provides the first insights into the expression of VAX2 in humans and its localization in the adult primate retina. Moreover, preliminary characterization of alternative variants suggests an involvement of VAX2 in multiple cellular pathways. Our findings raise the interesting possibility for further investigation of VAX2 in the retina in health and disease.


Subject(s)
Homeodomain Proteins/metabolism , Retina/metabolism , Transcription Factors/metabolism , Animals , Cell Nucleus/metabolism , Cytoplasm/metabolism , Cytoskeleton/metabolism , Humans , Macaca fascicularis , Mice , Prospective Studies , Protein Isoforms/metabolism , Retinal Cone Photoreceptor Cells/metabolism
13.
Hum Mol Genet ; 25(12): 2483-2497, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27106100

ABSTRACT

Inherited retinal dystrophies are a group of genetically heterogeneous conditions with broad phenotypic heterogeneity. We analyzed a large five-generation pedigree with early-onset recessive retinal degeneration to identify the causative mutation. Linkage analysis and homozygosity mapping combined with exome sequencing were carried out to map the disease locus and identify the p.G178R mutation in the asparaginase like-1 gene (ASRGL1), segregating with the retinal dystrophy phenotype in the study pedigree. ASRGL1 encodes an enzyme that catalyzes the hydrolysis of L-asparagine and isoaspartyl-peptides. Studies on the ASRGL1 expressed in Escherichia coli and transiently transfected mammalian cells indicated that the p.G178R mutation impairs the autocatalytic processing of this enzyme resulting in the loss of functional ASRGL1 and leaving the inactive precursor protein as a destabilized and aggregation-prone protein. A zebrafish model overexpressing the mutant hASRGL1 developed retinal abnormalities and loss of cone photoreceptors. Our studies suggest that the p.G178R mutation in ASRGL1 leads to photoreceptor degeneration resulting in progressive vision loss.


Subject(s)
Asparaginase/genetics , Autoantigens/genetics , Genetic Predisposition to Disease , Retina/pathology , Retinal Cone Photoreceptor Cells/pathology , Retinal Degeneration/genetics , Adult , Animals , Disease Models, Animal , Exome/genetics , Genetic Linkage , Humans , Male , Middle Aged , Mutation, Missense , Pedigree , Phenotype , Retinal Cone Photoreceptor Cells/metabolism , Retinal Degeneration/pathology , Visual Acuity/genetics , Visual Acuity/physiology , Zebrafish/genetics
14.
BMC Med Genomics ; 9: 15, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-27001270

ABSTRACT

BACKGROUND: Glaucoma is the largest cause of irreversible blindness affecting more than 60 million people globally. The disease is defined as a gradual loss of peripheral vision due to death of Retinal Ganglion Cells (RGC). The RGC death is largely influenced by the rate of aqueous humor production by ciliary processes and its passage through the trabecular meshwork (TM) in the anterior part of the eye. Primary open angle glaucoma (POAG), the most common subtype, is a genetically complex disease. Multiple genes and many loci have been reported to be involved in POAG but taken together they explain less than 10 % of the patients from a genetic perspective warranting more studies in different world populations. The purpose of this study was to perform genome-wide search for common variants associated with POAG in an east-Indian population. METHODS: The study recruited 746 POAG cases and 697 controls distributed into discovery and validation cohorts. In the discovery phase, genome-wide genotype data was generated on Illumina Infinium 660 W-Quad platform and the significant SNPs were genotyped using Illumina GGGT assay in the second phase. Logistic regression was used to test association in the discovery phase to adjust for population sub-structure and chi-square test was used for association analysis in validation phase. Publicly available expression dataset for trabecular meshwork was used to check for expression of the candidate gene under cyclic mechanical stress. Western blot and immunofluorescence experiments were performed in human TM cells and murine eye, respectively to check for expression of the candidate gene. RESULTS: Meta-analysis of discovery and validation phase data revealed the association of rs7916852 in MPP7 gene (p = 5.7x10(-7)) with POAG. We have shown abundant expression of MPP7 in the HTM cells. Expression analysis shows that upon cyclic mechanical stress MPP7 was significantly down-regulated in HTM (Fold change: 2.6; p = 0.018). MPP7 protein expression was also found to be enriched in the ciliary processes of the murine eye. CONCLUSION: Using a genome-wide approach we have identified MPP7 as a novel candidate gene for POAG with evidence of its expression in relevant ocular tissues and dysregulation under mechanical stress possibly mimicking the disease scenario.


Subject(s)
Down-Regulation/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Glaucoma, Open-Angle/genetics , Membrane Proteins/genetics , Stress, Mechanical , Trabecular Meshwork/metabolism , Animals , Ciliary Body/metabolism , Cohort Studies , Fluorescent Antibody Technique , Genetic Loci , Genome-Wide Association Study , Humans , India , Mice, Inbred C57BL , Polymorphism, Single Nucleotide/genetics , Reproducibility of Results , Trabecular Meshwork/pathology
15.
PLoS One ; 11(2): e0148678, 2016.
Article in English | MEDLINE | ID: mdl-26872363

ABSTRACT

The significance of the ubiquitin-proteasome system (UPS) for protein degradation has been highlighted in the context of neurodegenerative diseases, including retinal dystrophies. TOPORS, a dual E3 ubiquitin and SUMO1 ligase, forms a component of the UPS and selected substrates for its enzymatic activities, such as DJ-1/PARK7 and APOBEC2, are important for neuronal as well as retinal homeostasis, respectively. TOPORS is ubiquitously expressed, yet its mutations are only known to result in autosomal dominant retinitis pigmentosa. We performed a yeast two-hybrid (Y2H) screen of a human retinal cDNA library in order to identify interacting protein partners of TOPORS from the retina, and thus begin delineating the putative disease mechanism(s) associated with the retina-specific phenotype resulting from mutations in TOPORS. The screen led to isolation of the 26 S protease regulatory subunit 4 (P26s4/ PSMC1), an ATPase indispensable for correct functioning of UPS-mediated proteostasis. The interaction between endogenous TOPORS and P26s4 proteins was validated by co-immuno-precipitation from mammalian cell extracts and further characterised by immunofluorescent co-localisation studies in cell lines and retinal sections. Findings from hTERT-RPE1 and 661W cells demonstrated that TOPORS and P26s4 co-localise at the centrosome in cultured cells. Immunofluorescent staining of mouse retinae revealed a strong P26s4 reactivity at the interface between retinal pigmented epithelium (RPE) layer and the photoreceptors outer segments (OS). This finding leads us to speculate that P26s4, along with TOPORS, may have a role(s) in RPE phagocytosis, in addition to contributing to the overall photoreceptor and retinal homeostasis via the UPS.


Subject(s)
Adenosine Triphosphatases/metabolism , Neoplasm Proteins/metabolism , Nuclear Proteins/metabolism , Protein Interaction Maps , Retina/metabolism , Ubiquitin-Protein Ligases/metabolism , ATPases Associated with Diverse Cellular Activities , Adenosine Triphosphatases/analysis , Adenosine Triphosphatases/genetics , Animals , Cell Line , DNA, Complementary/genetics , Humans , Mice , Mutation , Neoplasm Proteins/analysis , Neoplasm Proteins/genetics , Nuclear Proteins/analysis , Nuclear Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Retina/cytology , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/analysis , Ubiquitin-Protein Ligases/genetics
16.
Sci Rep ; 6: 19450, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26781568

ABSTRACT

PRPF31-associated retinitis pigmentosa presents a fascinating enigma: some mutation carriers are blind, while others are asymptomatic. We identify the major molecular cause of this incomplete penetrance through three cardinal features: (1) there is population variation in the number (3 or 4) of a minisatellite repeat element (MSR1) adjacent to the PRPF31 core promoter; (2) in vitro, 3-copies of the MSR1 element can repress gene transcription by 50 to 115-fold; (3) the higher-expressing 4-copy allele is not observed among symptomatic PRPF31 mutation carriers and correlates with the rate of asymptomatic carriers in different populations. Thus, a linked transcriptional modifier decreases PRPF31 gene expression that leads to haploinsufficiency. This result, taken with other identified risk alleles, allows precise genetic counseling for the first time. We also demonstrate that across the human genome, the presence of MSR1 repeats in the promoters or first introns of genes is associated with greater population variability in gene expression indicating that copy number variation of MSR1s is a generic controller of gene expression and promises to provide new insights into our understanding of gene expression regulation.


Subject(s)
Eye Proteins/metabolism , Gene Expression Regulation , Penetrance , Repetitive Sequences, Nucleic Acid , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Scavenger Receptors, Class A/genetics , Alleles , Binding Sites , Conserved Sequence , DNA Copy Number Variations , Gene Expression , Gene Frequency , Genes, Reporter , Genetics, Population , Genotype , Humans , Nucleotide Motifs , Phenotype , Position-Specific Scoring Matrices , Promoter Regions, Genetic , Transcription, Genetic
17.
Mol Biol Evol ; 33(5): 1205-18, 2016 05.
Article in English | MEDLINE | ID: mdl-26764160

ABSTRACT

Recent results from large-scale genomic projects suggest that allele frequencies, which are highly relevant for medical purposes, differ considerably across different populations. The need for a detailed catalog of local variability motivated the whole-exome sequencing of 267 unrelated individuals, representative of the healthy Spanish population. Like in other studies, a considerable number of rare variants were found (almost one-third of the described variants). There were also relevant differences in allelic frequencies in polymorphic variants, including ∼10,000 polymorphisms private to the Spanish population. The allelic frequencies of variants conferring susceptibility to complex diseases (including cancer, schizophrenia, Alzheimer disease, type 2 diabetes, and other pathologies) were overall similar to those of other populations. However, the trend is the opposite for variants linked to Mendelian and rare diseases (including several retinal degenerative dystrophies and cardiomyopathies) that show marked frequency differences between populations. Interestingly, a correspondence between differences in allelic frequencies and disease prevalence was found, highlighting the relevance of frequency differences in disease risk. These differences are also observed in variants that disrupt known drug binding sites, suggesting an important role for local variability in population-specific drug resistances or adverse effects. We have made the Spanish population variant server web page that contains population frequency information for the complete list of 170,888 variant positions we found publicly available (http://spv.babelomics.org/), We show that it if fundamental to determine population-specific variant frequencies to distinguish real disease associations from population-specific polymorphisms.


Subject(s)
Disease/genetics , Exome , Databases, Nucleic Acid , Drug Resistance/genetics , Gene Frequency , Genetic Predisposition to Disease , Genetic Variation , Genetics, Population/methods , Humans , Internet , Pharmacogenomic Testing , Polymorphism, Genetic , Spain/epidemiology
18.
Sci Rep ; 5: 12910, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26263531

ABSTRACT

Retinitis pigmentosa (RP) represents a genetically heterogeneous group of retinal dystrophies affecting mainly the rod photoreceptors and in some instances also the retinal pigment epithelium (RPE) cells of the retina. Clinical symptoms and disease progression leading to moderate to severe loss of vision are well established and despite significant progress in the identification of causative genes, the disease pathology remains unclear. Lack of this understanding has so far hindered development of effective therapies. Here we report successful generation of human induced pluripotent stem cells (iPSC) from skin fibroblasts of a patient harboring a novel Ser331Cysfs*5 mutation in the MERTK gene. The patient was diagnosed with an early onset and severe form of autosomal recessive RP (arRP). Upon differentiation of these iPSC towards RPE, patient-specific RPE cells exhibited defective phagocytosis, a characteristic phenotype of MERTK deficiency observed in human patients and animal models. Thus we have created a faithful cellular model of arRP incorporating the human genetic background which will allow us to investigate in detail the disease mechanism, explore screening of a variety of therapeutic compounds/reagents and design either combined cell and gene- based therapies or independent approaches.


Subject(s)
Induced Pluripotent Stem Cells/pathology , Models, Biological , Proto-Oncogene Proteins/physiology , Receptor Protein-Tyrosine Kinases/physiology , Retinitis Pigmentosa/pathology , Animals , Case-Control Studies , Cell Differentiation , Humans , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Retinitis Pigmentosa/genetics , c-Mer Tyrosine Kinase
19.
Stem Cells ; 33(4): 1036-41, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25728093

ABSTRACT

Spinal cord injury (SCI) usually results in long lasting locomotor and sensory neuron degeneration below the injury. Astrocytes normally play a decisive role in mechanical and metabolic support of neurons, but in the spinal cord they cause injury, exerting well-known detrimental effects that contribute to glial scar formation and inhibition of axon outgrowth. Cell transplantation is considered a promising approach for replacing damaged cells and promoting neuroprotective and neuroregenerative repair, but the effects of the grafted cells on local tissue and the regenerative properties of endogenous neural stem cells in the injured spinal cord are largely unknown. During the last 2 decades cumulative evidence from diverse animal models has indicated that reactive astrocytes in synergy with transplanted cells could be beneficial for injury in multiple ways, including neuroprotection and axonal growth. In this review, we specifically focus on the dual opposing roles of reactive astrocytes in SCI and how they contribute to the creation of a permissive environment when combined with transplanted cells as the influential components for a local regenerative niche. Modulation of reactive astrocyte function might represent an extremely attractive new therapy to enhance the functional outcomes in patients.


Subject(s)
Astrocytes/metabolism , Astrocytes/transplantation , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/therapy , Stem Cell Transplantation/methods , Animals , Humans , Nerve Regeneration/physiology , Stem Cells/metabolism
20.
Invest Ophthalmol Vis Sci ; 56(13): 8297-305, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26720483

ABSTRACT

PURPOSE: The French Canadian population of Quebec is a unique, well-known founder population with religious, linguistic, and geographic isolation. The genetics of retinitis pigmentosa (RP) in Quebec is not well studied thus far. The purpose of our study was to establish the genetic architecture of autosomal dominant RP (adRP) and to characterize the phenotypes associated with new adRP mutations in Quebec. METHODS: Sanger sequencing of the commonly mutated currently known adRP genes was performed in a clinically well-characterized cohort of 60 adRP French Canadian families. Phenotypes were analyzed by projected visual acuity (best corrected), Goldmann visual fields, optical coherence tomography (OCT), fundus autofluorescence (FAF), and ERG. The potential effect of the novel mutations was assessed using in silico bioinformatic tools. The pathogenicity of all variants was then confirmed by segregation analysis within the families, when available. RESULTS: We identified the causal mutation/gene in 24 of our adRP families, as 24 (40%) of 60 patients had adRP mutations in six known adRP genes. Eleven (46%) of these mutations were in RHO, four mutations (17%) were found in SNRNP200, three mutations (12.5%) in PRPH2/RDS, three mutations (12.5%) in TOPORS, two mutations (8%) in PRPF31, and one mutation (4%) in IMPDH1. Four mutations were novel. We identified new mutations in RHO (p.S270I), PRPF31 (p.R288W), IMPDH1 (p.Q318H), and TOPORS (p.H889R); the rest were previously reported. We present the genotype-phenotype characteristics of the four novel missense mutations. CONCLUSIONS: This is the first large screening of adRP genes in the founder population of Quebec. Our prevalence of known adRP genes is 40% in the French Canadian population, which is lower than in other adRP populations around the world, illustrating the uniqueness of the French Canadian population. Our findings are crucial in expanding the current understanding of the genotypic-phenotypic spectrum of RP and documenting the genetic architecture of our founder population.


Subject(s)
DNA/genetics , Eye Proteins/genetics , Mutation , Retinitis Pigmentosa/genetics , Adult , Aged , DNA Mutational Analysis , Eye Proteins/metabolism , Female , Genes, Dominant , Genotype , Humans , Male , Middle Aged , Pedigree , Phenotype , Prevalence , Quebec/epidemiology , Retinitis Pigmentosa/epidemiology , Retinitis Pigmentosa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...