Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Bioinform ; 4: 1358550, 2024.
Article in English | MEDLINE | ID: mdl-38562910

ABSTRACT

Recent advancements in contact map-based protein three-dimensional (3D) structure prediction have been driven by the evolution of deep learning algorithms. However, the gap in accessible software tools for novices in this domain remains a significant challenge. This study introduces GoFold, a novel, standalone graphical user interface (GUI) designed for beginners to perform contact map overlap (CMO) problems for better template selection. Unlike existing tools that cater more to research needs or assume foundational knowledge, GoFold offers an intuitive, user-friendly platform with comprehensive tutorials. It stands out in its ability to visually represent the CMO problem, allowing users to input proteins in various formats and explore the CMO problem. The educational value of GoFold is demonstrated through benchmarking against the state-of-the-art contact map overlap method, map_align, using two datasets: PSICOV and CAMEO. GoFold exhibits superior performance in terms of TM-score and Z-score metrics across diverse qualities of contact maps and target difficulties. Notably, GoFold runs efficiently on personal computers without any third-party dependencies, thereby making it accessible to the general public for promoting citizen science. The tool is freely available for download for macOS, Linux, and Windows.

2.
Methods Mol Biol ; 2627: 41-59, 2023.
Article in English | MEDLINE | ID: mdl-36959441

ABSTRACT

The ability to successfully predict the three-dimensional structure of a protein from its amino acid sequence has made considerable progress in the recent past. The progress is propelled by the improved accuracy of deep learning-based inter-residue contact map predictors coupled with the rising growth of protein sequence databases. Contact map encodes interatomic interaction information that can be exploited for highly accurate prediction of protein structures via contact map threading even for the query proteins that are not amenable to direct homology modeling. As such, contact-assisted threading has garnered considerable research effort. In this chapter, we provide an overview of existing contact-assisted threading methods while highlighting the recent advances and discussing some of the current limitations and future prospects in the application of contact-assisted threading for improving the accuracy of low-homology protein modeling.


Subject(s)
Algorithms , Sequence Analysis, Protein , Sequence Analysis, Protein/methods , Proteins/chemistry , Software , Amino Acid Sequence , Databases, Protein , Protein Conformation , Protein Folding
3.
Proteins ; 90(12): 2023-2034, 2022 12.
Article in English | MEDLINE | ID: mdl-35751651

ABSTRACT

Protein contact maps have proven to be a valuable tool in the deep learning revolution of protein structure prediction, ushering in the recent breakthrough by AlphaFold2. However, self-assessment of the quality of predicted structures are typically performed at the granularity of three-dimensional coordinates as opposed to directly exploiting the rotation- and translation-invariant two-dimensional (2D) contact maps. Here, we present rrQNet, a deep learning method for self-assessment in 2D by contact map quality estimation. Our approach is based on the intuition that for a contact map to be of high quality, the residue pairs predicted to be in contact should be mutually consistent with the evolutionary context of the protein. The deep neural network architecture of rrQNet implements this intuition by cascading two deep modules-one encoding the evolutionary context and the other performing evolutionary reconciliation. The penultimate stage of rrQNet estimates the quality scores at the interacting residue-pair level, which are then aggregated for estimating the quality of a contact map. This design choice offers versatility at varied resolutions from individual residue pairs to full-fledged contact maps. Trained on multiple complementary sources of contact predictors, rrQNet facilitates generalizability across various contact maps. By rigorously testing using publicly available datasets and comparing against several in-house baseline approaches, we show that rrQNet accurately reproduces the true quality score of a predicted contact map and successfully distinguishes between accurate and inaccurate contact maps predicted by a wide variety of contact predictors. The open-source rrQNet software package is freely available at https://github.com/Bhattacharya-Lab/rrQNet.


Subject(s)
Computational Biology , Proteins , Computational Biology/methods , Proteins/chemistry , Neural Networks, Computer , Software , Biological Evolution
4.
Proteins ; 90(2): 579-588, 2022 02.
Article in English | MEDLINE | ID: mdl-34599831

ABSTRACT

Threading a query protein sequence onto a library of weakly homologous structural templates remains challenging, even when sequence-based predicted contact or distance information is used. Contact-assisted or distance-assisted threading methods utilize only the spatial proximity of the interacting residue pairs for template selection and alignment, ignoring their orientation. Moreover, existing threading methods fail to consider the neighborhood effect induced by the query-template alignment. We present a new distance- and orientation-based covariational threading method called DisCovER by effectively integrating information from inter-residue distance and orientation along with the topological network neighborhood of a query-template alignment. Our method first selects a subset of templates using standard profile-based threading coupled with topological network similarity terms to account for the neighborhood effect and subsequently performs distance- and orientation-based query-template alignment using an iterative double dynamic programming framework. Multiple large-scale benchmarking results on query proteins classified as weakly homologous from the continuous automated model evaluation experiment and from the current literature show that our method outperforms several existing state-of-the-art threading approaches, and that the integration of the neighborhood effect with the inter-residue distance and orientation information synergistically contributes to the improved performance of DisCovER. DisCovER is freely available at https://github.com/Bhattacharya-Lab/DisCovER.


Subject(s)
Algorithms , Proteins/chemistry , Amino Acid Sequence , Databases, Protein , Protein Conformation , Sequence Alignment
5.
Front Mol Biosci ; 8: 643752, 2021.
Article in English | MEDLINE | ID: mdl-34046429

ABSTRACT

Sequence-based protein homology detection has emerged as one of the most sensitive and accurate approaches to protein structure prediction. Despite the success, homology detection remains very challenging for weakly homologous proteins with divergent evolutionary profile. Very recently, deep neural network architectures have shown promising progress in mining the coevolutionary signal encoded in multiple sequence alignments, leading to reasonably accurate estimation of inter-residue interaction maps, which serve as a rich source of additional information for improved homology detection. Here, we summarize the latest developments in protein homology detection driven by inter-residue interaction map threading. We highlight the emerging trends in distant-homology protein threading through the alignment of predicted interaction maps at various granularities ranging from binary contact maps to finer-grained distance and orientation maps as well as their combination. We also discuss some of the current limitations and possible future avenues to further enhance the sensitivity of protein homology detection.

6.
PLoS Comput Biol ; 17(2): e1008753, 2021 02.
Article in English | MEDLINE | ID: mdl-33621244

ABSTRACT

Crystallography and NMR system (CNS) is currently a widely used method for fragment-free ab initio protein folding from inter-residue distance or contact maps. Despite its widespread use in protein structure prediction, CNS is a decade-old macromolecular structure determination system that was originally developed for solving macromolecular geometry from experimental restraints as opposed to predictive modeling driven by interaction map data. As such, the adaptation of the CNS experimental structure determination protocol for ab initio protein folding is intrinsically anomalous that may undermine the folding accuracy of computational protein structure prediction. In this paper, we propose a new CNS-free hierarchical structure modeling method called DConStruct for folding both soluble and membrane proteins driven by distance and contact information. Rigorous experimental validation shows that DConStruct attains much better reconstruction accuracy than CNS when tested with the same input contact map at varying contact thresholds. The hierarchical modeling with iterative self-correction employed in DConStruct scales at a much higher degree of folding accuracy than CNS with the increase in contact thresholds, ultimately approaching near-optimal reconstruction accuracy at higher-thresholded contact maps. The folding accuracy of DConStruct can be further improved by exploiting distance-based hybrid interaction maps at tri-level thresholding, as demonstrated by the better performance of our method in folding free modeling targets from the 12th and 13th rounds of the Critical Assessment of techniques for protein Structure Prediction (CASP) experiments compared to popular CNS- and fragment-based approaches and energy-minimization protocols, some of which even using much finer-grained distance maps than ours. Additional large-scale benchmarking shows that DConStruct can significantly improve the folding accuracy of membrane proteins compared to a CNS-based approach. These results collectively demonstrate the feasibility of greatly improving the accuracy of ab initio protein folding by optimally exploiting the information encoded in inter-residue interaction maps beyond what is possible by CNS.


Subject(s)
Computational Biology/methods , Membrane Proteins/chemistry , Solubility , Algorithms , Computer Simulation , Crystallography , Crystallography, X-Ray , Databases, Protein , Humans , Hybridization, Genetic , Image Processing, Computer-Assisted , Models, Molecular , Neural Networks, Computer , Protein Conformation , Protein Folding , Protein Structure, Secondary , Reproducibility of Results
7.
PLoS One ; 15(12): e0243331, 2020.
Article in English | MEDLINE | ID: mdl-33270805

ABSTRACT

Recent advances in distance-based protein folding have led to a paradigm shift in protein structure prediction. Through sufficiently precise estimation of the inter-residue distance matrix for a protein sequence, it is now feasible to predict the correct folds for new proteins much more accurately than ever before. Despite the exciting progress, a dedicated visualization system that can dynamically capture the distance-based folding process is still lacking. Most molecular visualizers typically provide only a static view of a folded protein conformation, but do not capture the folding process. Even among the selected few graphical interfaces that do adopt a dynamic perspective, none of them are distance-based. Here we present PolyFold, an interactive visual simulator for dynamically capturing the distance-based protein folding process through real-time rendering of a distance matrix and its compatible spatial conformation as it folds in an intuitive and easy-to-use interface. PolyFold integrates highly convergent stochastic optimization algorithms with on-demand customizations and interactive manipulations to maximally satisfy the geometric constraints imposed by a distance matrix. PolyFold is capable of simulating the complex process of protein folding even on modest personal computers, thus making it accessible to the general public for fostering citizen science. Open source code of PolyFold is freely available for download at https://github.com/Bhattacharya-Lab/PolyFold. It is implemented in cross-platform Java and binary executables are available for macOS, Linux, and Windows.


Subject(s)
Algorithms , Protein Folding , Proteins/chemistry , Software , Protein Conformation
8.
Bioinformatics ; 36(Suppl_1): i285-i291, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32657397

ABSTRACT

MOTIVATION: Protein model quality estimation, in many ways, informs protein structure prediction. Despite their tight coupling, existing model quality estimation methods do not leverage inter-residue distance information or the latest technological breakthrough in deep learning that has recently revolutionized protein structure prediction. RESULTS: We present a new distance-based single-model quality estimation method called QDeep by harnessing the power of stacked deep residual neural networks (ResNets). Our method first employs stacked deep ResNets to perform residue-level ensemble error classifications at multiple predefined error thresholds, and then combines the predictions from the individual error classifiers for estimating the quality of a protein structural model. Experimental results show that our method consistently outperforms existing state-of-the-art methods including ProQ2, ProQ3, ProQ3D, ProQ4, 3DCNN, MESHI, and VoroMQA in multiple independent test datasets across a wide-range of accuracy measures; and that predicted distance information significantly contributes to the improved performance of QDeep. AVAILABILITY AND IMPLEMENTATION: https://github.com/Bhattacharya-Lab/QDeep. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology , Neural Networks, Computer , Proteins
9.
Sci Rep ; 10(1): 2908, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32076047

ABSTRACT

The development of improved threading algorithms for remote homology modeling is a critical step forward in template-based protein structure prediction. We have recently demonstrated the utility of contact information to boost protein threading by developing a new contact-assisted threading method. However, the nature and extent to which the quality of a predicted contact map impacts the performance of contact-assisted threading remains elusive. Here, we systematically analyze and explore this interdependence by employing our newly-developed contact-assisted threading method over a large-scale benchmark dataset using predicted contact maps from four complementary methods including direct coupling analysis (mfDCA), sparse inverse covariance estimation (PSICOV), classical neural network-based meta approach (MetaPSICOV), and state-of-the-art ultra-deep learning model (RaptorX). Experimental results demonstrate that contact-assisted threading using high-quality contacts having the Matthews Correlation Coefficient (MCC) ≥ 0.5 improves threading performance in nearly 30% cases, while low-quality contacts with MCC <0.35 degrades the performance for 50% cases. This holds true even in CASP13 dataset, where threading using high-quality contacts (MCC ≥ 0.5) significantly improves the performance of 22 instances out of 29. Collectively, our study uncovers the mutual association between the quality of predicted contacts and its possible utility in boosting threading performance for improving low-homology protein modeling.


Subject(s)
Algorithms , Structural Homology, Protein , Databases, Protein , Models, Molecular , Neural Networks, Computer
10.
Proteins ; 87(7): 596-606, 2019 07.
Article in English | MEDLINE | ID: mdl-30882932

ABSTRACT

Template-based modeling is considered as one of the most successful approaches for protein structure prediction. However, reliably and accurately selecting optimal template proteins from a library of known protein structures having similar folds as the target protein and making correct alignments between the target sequence and the template structures, a template-based modeling technique known as threading, remains challenging, particularly for non- or distantly-homologous protein targets. With the recent advancement in protein residue-residue contact map prediction powered by sequence co-evolution and machine learning, here we systematically analyze the effect of inclusion of residue-residue contact information in improving the accuracy and reliability of protein threading. We develop a new threading algorithm by incorporating various sequential and structural features, and subsequently integrate residue-residue contact information as an additional scoring term for threading template selection. We show that the inclusion of contact information attains statistically significantly better threading performance compared to a baseline threading algorithm that does not utilize contact information when everything else remains the same. Experimental results demonstrate that our contact based threading approach outperforms popular threading method MUSTER, contact-assisted ab initio folding method CONFOLD2, and recent state-of-the-art contact-assisted protein threading methods EigenTHREADER and map_align on several benchmarks. Our study illustrates that the inclusion of contact maps is a promising avenue in protein threading to ultimately help to improve the accuracy of protein structure prediction.


Subject(s)
Proteins/chemistry , Algorithms , Amino Acid Sequence , Databases, Protein , Models, Molecular , Protein Conformation , Protein Folding , Sequence Analysis, Protein/methods , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...